In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc
[À l’ombre de l’HR  : Vecteurs cycliques de l’espace de Hardy du multidisque hilbertien]
Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1601-1626.

Il s’agit du problème de la complétude d’un système de dilatations (ϕ(nx))n1 dans l’espace de Lebesgue L2(0,1)ϕ est une fonction impaire 2-périodique. Sans utiliser les séries de Dirichlet, on montre que le problème est équivalent à une question ouverte sur les vecteurs cycliques dans l’espace de Hardy H2(𝔻2) du multidisque 𝔻2 de Hilbert. Quelques conditions suffisantes de cyclicité sont établies, ce qui néanmoins inclut pratiquement tous les résultats précédents du sujet (ceux de Wintner ; Kozlov ; Neuwirth, Ginsberg, and Newman ; Hedenmalm, Lindquist, and Seip). Par exemple, chacune des conditions suivantes entraîne la cyclicité d’une fonction f dans H2(𝔻2) : 1) f1+ϵH2(𝔻2), f-ϵH2(𝔻2) ; 2) Re(f(z))0, z𝔻2 ; 3) fHol((1+ϵ)𝔻2) et f(z)0 sur 𝔻2. L’Hypothèse de Riemann sur les zéros de la fonction ζ d’Euler est équivalente à un problème semblable de la complétude des dilatations (B.Nyman).

Completeness of a dilation system (ϕ(nx))n1 on the standard Lebesgue space L2(0,1) is considered for 2-periodic functions ϕ. We show that the problem is equivalent to an open question on cyclic vectors of the Hardy space H2(𝔻2) on the Hilbert multidisc 𝔻2. Several simple sufficient conditions are exhibited, which include however practically all previously known results (Wintner; Kozlov; Neuwirth, Ginsberg, and Newman; Hedenmalm, Lindquist, and Seip). For instance, each of the following conditions implies cyclicity of a function fH2(𝔻2): 1) f1+ϵH2(𝔻2), f-ϵH2(𝔻2); 2) Re(f(z))0, z𝔻2; 3) fHol((1+ϵ)𝔻2) and f(z)0 on 𝔻2. The Riemann Hypothesis on zeros of the Euler ζ-function is known to be equivalent to a completeness of a similar but non-periodic dilation system (due to Nyman).

DOI : 10.5802/aif.2731
Classification : 32A35, 32A60, 42B30, 42C30, 47A16
Keywords: dilation semigroup, Hilbert’s multidisc, cyclic vector, outer function, completeness problem, Riemann hypothesis
Mot clés : semigroupe de dilatation, multidisque d’Hilbert, vecteurs cycliques, fonctions extérieure, problème de complétude, l’hypothèse de Riemann
Nikolski, Nikolai 1

1 Université de Bordeaux 1 UFR de Mathématiques et Informatique 351 cours de la Libération 33405 Talence France Steklov Institute of Mathematics 27 Fontanka 191023, St.Petersburg Russia
@article{AIF_2012__62_5_1601_0,
     author = {Nikolski, Nikolai},
     title = {In a shadow of the {RH:} {Cyclic} vectors of {Hardy} spaces on the {Hilbert} multidisc},
     journal = {Annales de l'Institut Fourier},
     pages = {1601--1626},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {5},
     year = {2012},
     doi = {10.5802/aif.2731},
     zbl = {1267.30108},
     mrnumber = {3025149},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2731/}
}
TY  - JOUR
AU  - Nikolski, Nikolai
TI  - In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1601
EP  - 1626
VL  - 62
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2731/
DO  - 10.5802/aif.2731
LA  - en
ID  - AIF_2012__62_5_1601_0
ER  - 
%0 Journal Article
%A Nikolski, Nikolai
%T In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc
%J Annales de l'Institut Fourier
%D 2012
%P 1601-1626
%V 62
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2731/
%R 10.5802/aif.2731
%G en
%F AIF_2012__62_5_1601_0
Nikolski, Nikolai. In a shadow of the RH: Cyclic vectors of Hardy spaces on the Hilbert multidisc. Annales de l'Institut Fourier, Tome 62 (2012) no. 5, pp. 1601-1626. doi : 10.5802/aif.2731. https://www.numdam.org/articles/10.5802/aif.2731/

[1] Agrawal, O.; Clark, D.; Douglas, R. Invariant subspaces in the polydisk, Pacific J. Math., Volume 121 (1986), pp. 1-11 | DOI | MR | Zbl

[2] Báez-Duarte, L. A strengthening of the Nyman-Beurling criterion for the Riemann hypothesis, Atti Acad. Naz. Lincei, Volume 14 (2003), pp. 5-11 | MR | Zbl

[3] Báez-Duarte, L.; Balazard, M.; Landreau, B.; Saias, E. Notes sur la fonction ζ de Riemann, 3, Adv. Math., Volume 149 (2000) no. 1, pp. 130-144 | DOI | MR | Zbl

[4] Bagchi, B. On Nyman, Beurling and Baez-Duarte’s Hilbert space reformulation of the Riemann hypothesis, Proc. Indian Acad. Sci. (Math. Sci.), Volume 116 (2006) no. 2, pp. 137-146 | DOI | MR | Zbl

[5] Balazard, M. Completeness problems and the Riemann hypothesis: an annotated bibliography, Number theory for the millenium (Proc. Millenial Conf. Number Theory, Urbana, IL, 2000), (M.A.Bennett et al., eds), AK Peters, Boston, 2002, pp. 21-48 | MR | Zbl

[6] Beurling, A. A closure problem related to the Riemann zeta-function, Proc. Nat. Acad. USA, Volume 41 (1955) no. 5, pp. 312-314 | DOI | MR | Zbl

[7] Beurling, A. On the completeness of {ψ(nt)} on L2(0,1), Harmonic Analysis, Contemp. Mathematicians (The collected Works of Arne Beurling), Volume 2, Birkhaüser, Boston, 1989, pp. 378-380 | MR

[8] Bohr, H. Über die Bedeutung der Potenzreihen unendlich vieler Variabeln in der Theorie der Dirichletschen Reien anns, Nachr. Ges. Wiss. Göttingen. Math.-Phys. Kl., 1913, A9

[9] Cole, B.; Gamelin, T. Representing measures and Hardy spaces for the infinite polydisk algebra, Proc. London Math. Soc. (3), Volume 53 (1986), pp. 112-142 | DOI | MR | Zbl

[10] Cotlar, M.; Sadosky, C. A polydisc version of Beurling’s characterization for invariant subspaces of finite multi-codimension, Contemp. Math., Volume 212 (1998), pp. 51-56 | DOI | MR | Zbl

[11] Gelca, R. Topological Hilbert Nullstellensatz for Bergman spaces, Int. Equations Operator Theory, Volume 28 (1997) no. 2, pp. 191-195 | DOI | MR | Zbl

[12] Ginsberg, J.; Neuwirth, J.; Newman, D. Approxiamtion by f(kx), J. Funct. Anal., Volume 5 (1970), pp. 194-203 | DOI | MR | Zbl

[13] Green, B.; Tao, T. The primes contain arbitrarily long arithmetic progressions, Annals of Math., Volume 167 (2008), pp. 481-547 | DOI | MR | Zbl

[14] Hedenmalm, H.; Lindquist, P.; Seip, K. A Hilbert space of Dirichlet series and sytems of dilated functions in L2(0,1), Duke Math. J., Volume 86 (1997), pp. 1-37 | DOI | MR | Zbl

[15] Hedenmalm, H.; Lindquist, P.; Seip, K. Addendum to “A Hilbert space of Dirichlet series and sytems of dilated functions in L2(0,1), Duke Math. J., Volume 99 (1999), pp. 175-178 | DOI | MR | Zbl

[16] Hilbert, D. Wesen und Ziele einer Analysis der unendlich vielen unabhängigen Variablen, Rend. Cir. Mat. Palermo, Volume 27 (1909), pp. 59-74 | DOI

[17] Krantz, S.; Parks, H. A Primer of Real Analytic Functions, Birkhaüser, Basel, 1992 | MR | Zbl

[18] Lojaciewicz, S. Sur le problème de la division, Studia Math., Volume 18 (1959), pp. 87-136 | MR | Zbl

[19] Lopez, J.; Ross, K. Sidon sets, N.Y., M.Dekker, 1975 | MR | Zbl

[20] Mandrekar, V. The validity of Beurling theorems in polydiscs, Proc. Amer. Math. Soc., Volume 103 (1998) no. 1, pp. 145-148 | DOI | MR | Zbl

[21] Nikolski, N. Selected problems of weighted approximation and spectral analysis, 120, Trudy Math. Inst. Steklova, Moscow (Russian), 1974 English transl.: Proc. Steklov Math. Inst., No 120 (1974), AMS, Providence, 1976 | MR | Zbl

[22] Nyman, B. On the one-dimensional translation group and semi-group in certain function spaces, Thesis, Uppsala Univ., 1950 | MR | Zbl

[23] Olofsson, A. On the shift semigroup on the Hardy space of Dirichlet series, Acta Math. Hungar., 2010 | MR | Zbl

[24] Rudin, W. Function theory in polydiscs, W.A.Benjamin, Inc, N.Y. - Amsterdam, 1969 | MR | Zbl

[25] Shamoyan, F. Weakly invertible elements in weighted anisothropic spaces of holomorphic functions in a polydisk, Mat. Sbornik, Volume 193:6 (1998), pp. 143-160 (Russian); Engl. transl. | MR | Zbl

[26] Shamoyan, R.; Li, Haiying On weakly invertible functions in the unit ball and polydisk and related problems, J. Math. Analysis, Volume 1:1 (2010), pp. 8-19 | MR

[27] Vasyunin, V. On a biorthogonal system related with the Riemann hypothesis, Algebra i Analyz, Volume 7 (1995), pp. 118-135 (Russian); English transl.: St.Petersburg Math. J. 7 (1996), 405-419 | MR | Zbl

[28] Wintner, A. Diophantine approximation and Hilbert’s space, Amer. J. Math., Volume 66 (1944), pp. 564-578 | DOI | MR | Zbl

[29] Zhu, K Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005 | MR | Zbl

  • Guo, Kunyu; Ni, Jiaqi; Zhou, Qi Nevanlinna class, Dirichlet series and Szegő’s problem, Annales de l'Institut Fourier (2025), p. 1 | DOI:10.5802/aif.3696
  • Guo, Kunyu; Li, Dilong; Zhou, Qi The first Szegő limit theorem on multi-dimensional torus, Advances in Mathematics, Volume 450 (2024), p. 109744 | DOI:10.1016/j.aim.2024.109744
  • Ni, Jiaqi Littlewood-type theorems for Hardy spaces in infinitely many variables, Bulletin des Sciences Mathématiques, Volume 193 (2024), p. 103447 | DOI:10.1016/j.bulsci.2024.103447
  • Mirotin, A. μ-Hankel operators on compact Abelian groups, Analysis Mathematica, Volume 49 (2023) no. 2, p. 617 | DOI:10.1007/s10476-023-0217-3
  • Manzur, Juan; Noor, Waleed; Santos, Charles F. A weighted composition semigroup related to three open problems, Journal of Mathematical Analysis and Applications, Volume 525 (2023) no. 1, p. 127261 | DOI:10.1016/j.jmaa.2023.127261
  • Nikolski, Nikolai On the Cyclicity of Dilated Systems in Lattices: Multiplicative Sequences, Polynomials, Dirichlet-type Spaces and Algebras, Moroccan Journal of Pure and Applied Analysis, Volume 9 (2023) no. 2, p. 238 | DOI:10.2478/mjpaa-2023-0017
  • Dan, Hui; Guo, Kunyu Dilation theory and analytic model theory for doubly commuting sequences of C·0-contractions, Science China Mathematics, Volume 66 (2023) no. 2, p. 303 | DOI:10.1007/s11425-020-1965-1
  • Dan, H.; Guo, K. Power dilation systems 𝑓(𝑧^𝑘)_𝑘∈ℕ in Dirichlet-type spaces, St. Petersburg Mathematical Journal, Volume 34 (2023) no. 3, p. 439 | DOI:10.1090/spmj/1762
  • Hilberdink, T.; Pushnitski, A. Spectral asymptotics for a family of LCM matrices, St. Petersburg Mathematical Journal, Volume 34 (2023) no. 3, p. 463 | DOI:10.1090/spmj/1764
  • Guo, Kunyu; Yan, Fugang Toeplitz operators on the Hardy space over the infinite-dimensional polydisc, Acta Scientiarum Mathematicarum, Volume 88 (2022) no. 1-2, p. 223 | DOI:10.1007/s44146-022-00016-z
  • Antezana, Jorge; Carando, Daniel; Scotti, Melisa Splitting the Riesz basis condition for systems of dilated functions through Dirichlet series, Journal of Mathematical Analysis and Applications, Volume 507 (2022) no. 1, p. 125733 | DOI:10.1016/j.jmaa.2021.125733
  • Sampat, Jeet Cyclicity Preserving Operators on Spaces of Analytic Functions in Cn, Integral Equations and Operator Theory, Volume 93 (2021) no. 2 | DOI:10.1007/s00020-021-02626-8
  • Guo, Kunyu; Zhou, Qi Cyclic Vectors, Outer Functions and Mahler Measure in Two Variables, Integral Equations and Operator Theory, Volume 93 (2021) no. 5 | DOI:10.1007/s00020-021-02671-3
  • Dan, Hui; Guo, Kunyu The periodic dilation completeness problem: cyclic vectors in the Hardy space over the infinite‐dimensional polydisk, Journal of the London Mathematical Society, Volume 103 (2021) no. 1, p. 1 | DOI:10.1112/jlms.12365
  • Waleed Noor, S. A Hardy space analysis of the Báez-Duarte criterion for the RH, Advances in Mathematics, Volume 350 (2019), p. 242 | DOI:10.1016/j.aim.2019.04.064
  • Nikolski, Nikolaï Hardy Spaces, 2019 | DOI:10.1017/9781316882108
  • Mityagin, B. S. Systems of dilated functions: Completeness, minimality, basisness, Functional Analysis and Its Applications, Volume 51 (2017) no. 3, p. 236 | DOI:10.1007/s10688-017-0188-x
  • Mityagin, Boris Samuilovich Системы сжатых функций: полнота, минимальность, базисность, Функциональный анализ и его приложения, Volume 51 (2017) no. 3, p. 94 | DOI:10.4213/faa3489
  • Bénéteau, Catherine; Knese, Greg; Kosiński, Łukasz; Liaw, Constanze; Seco, Daniel; Sola, Alan Cyclic polynomials in two variables, Transactions of the American Mathematical Society, Volume 368 (2016) no. 12, p. 8737 | DOI:10.1090/tran6689

Cité par 19 documents. Sources : Crossref