On donne une preuve simple d’un résultat dû à Dimca et Suciu : un groupe de Kähler qui est aussi le groupe fondamental d’une variété trois-dimensionelle est fini. On montre également qu’un groupe qui est le groupe fondamental d’une variété trois-dimensionelle et en même temps le groupe fondamental d’une surface complexe compacte non-kählerienne est soit soit .
We give a simple proof of a result originally due to Dimca and Suciu: a group that is both Kähler and the fundamental group of a closed three-manifold is finite. We also prove that a group that is both the fundamental group of a closed three-manifold and of a non-Kähler compact complex surface is or .
Keywords: three-manifold groups, Kähler groups
Mot clés : groupes fondamentaux des variétés trois-dimensionelles, groupes de Kähler
@article{AIF_2012__62_3_1081_0, author = {Kotschick, D.}, title = {Three-manifolds and {K\"ahler} groups}, journal = {Annales de l'Institut Fourier}, pages = {1081--1090}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {62}, number = {3}, year = {2012}, doi = {10.5802/aif.2717}, zbl = {1275.32018}, mrnumber = {3013817}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2717/} }
TY - JOUR AU - Kotschick, D. TI - Three-manifolds and Kähler groups JO - Annales de l'Institut Fourier PY - 2012 SP - 1081 EP - 1090 VL - 62 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2717/ DO - 10.5802/aif.2717 LA - en ID - AIF_2012__62_3_1081_0 ER -
Kotschick, D. Three-manifolds and Kähler groups. Annales de l'Institut Fourier, Tome 62 (2012) no. 3, pp. 1081-1090. doi : 10.5802/aif.2717. http://www.numdam.org/articles/10.5802/aif.2717/
[1] On the Malcev completion of Kähler groups, Comment. Math. Helv., Volume 71 (1996), pp. 192-212 | DOI | EuDML | MR | Zbl
[2] Fundamental Groups of Compact Kähler Manifolds, Mathematical Surveys and Monographs, 44, Amer. Math. Soc., Providence, R.I., 1996 | MR | Zbl
[3] Compact Complex Surfaces, Mathematical Surveys and Monographs, Springer-Verlag, Berlin, 1984 | MR | Zbl
[4] On compact Kähler surfaces, Ann. Inst. Fourier, Volume 49 (1999), pp. 287-302 | DOI | EuDML | Numdam | MR | Zbl
[5] Harmonic mapping of Kähler manifolds to locally symmetric spaces, Publ. Math. I.H.E.S., Volume 69 (1989), pp. 173-201 | EuDML | Numdam | MR | Zbl
[6] Which -manifold groups are Kähler groups?, J. Eur. Math. Soc., Volume 11 (2009), pp. 521-528 | DOI | EuDML | MR | Zbl
[7] Sur le groupe fondamental d’une variété kählérienne, C. R. Acad. Sci. Paris Sér. I Math., Volume 308 (1989), pp. 67-70 | MR | Zbl
[8] Virtually Haken manifolds, Combinatorial methods in topology and algebraic geometry (Contemp. Math.), Volume 44, Providence, RI, Rochester, N.Y., 1982, Amer. Math. Soc. (1985), pp. 149-155 | MR | Zbl
[9] Residual finiteness for 3-manifolds, Combinatorial group theory and topology, ed. S. M. Gersten and J. R. Stallings, Ann. Math. Stud. vol. 111, Princeton Univ. Press, 1987 | MR | Zbl
[10] Non-positively curved -manifolds with non-Kähler , C. R. Acad. Sci. Paris Sér. I, Volume 332 (2001), pp. 249-252 | DOI | MR
[11] On the fundamental group of a complex algebraic manifold, Bull. London Math. Soc., Volume 19 (1987), pp. 463-466 | DOI | MR | Zbl
[12] Problems in Low-Dimensional Topology, Geometric Topology (AMS/IP Studies in Advanced Mathematics), Volume 2 part 2, American Mathematical Society and International Press (1997) | MR | Zbl
[13] Notes on Perelman’s papers, Geom. Topol., Volume 12 (2008), pp. 2587-2855 | DOI | MR
[14] Kähler groups and duality, Preprint arXiv:1005.2836v1 [math.GR], 17 May 2010
[15] Finite covers of -manifolds containing essential surfaces of Euler characteristic , Proc. Amer. Math. Soc., Volume 101 (1987), pp. 743-747 | MR | Zbl
[16] Shafarevich maps and automorphic forms, Mathematical Surveys and Monographs, Princeton Univ. Press, Princeton, NJ, 1995 | MR | Zbl
[17] Finite covers of -manifolds containing essential tori, Trans. Amer. Math. Soc., Volume 310 (1988), pp. 381-391 | MR | Zbl
[18] A unique decomposition theorem for -manifolds, Amer. J. Math., Volume 84 (1962), pp. 1-7 | DOI | MR | Zbl
[19] Ricci flow and the Poincaré conjecture, Amer. Math. Soc. and Clay Math. Institute, 2007 | MR
[20] Towards classification of non-Kählerian complex surfaces, Sugaku Exp., Volume 2 (1989), pp. 209-229 | MR | Zbl
[21] Ricci flow with surgery on three-manifolds, Preprint arXiv:math/0303109v1 [math.DG], 10 Mar 2003
[22] The entropy formula for the Ricci flow and its geometric applications, Preprint arXiv:math/0211159v1 [math.DG], 11 Nov 2002
[23] The geometries of -manifolds, Bull. London Math. Soc., Volume 15 (1983), pp. 401-487 | DOI | MR | Zbl
[24] The existence of anti-self-dual conformal structures, J. Differential Geometry, Volume 36 (1992), pp. 163-253 | MR | Zbl
[25] Examples of fundamental groups of compact Kähler manifolds, Bull. London Math. Soc., Volume 22 (1990), pp. 339-343 | DOI | MR | Zbl
Cité par Sources :