The cofinal property of the reflexive indecomposable Banach spaces
Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 1-45.

On démontre que tout espace de Banach séparable réflexif est quotient d’un espace réflexif héréditairement indécomposable, ce qui implique que tout espace de Banach séparable réflexif est isomorphe à un sous-espace d’un espace réflexif indécomposable. De plus, tout espace de Banach séparable réflexif est quotient d’un espace réflexif complémentablement p -saturé, où 1<p<+, et d’un espace c 0 -saturé.

It is shown that every separable reflexive Banach space is a quotient of a reflexive hereditarily indecomposable space, which yields that every separable reflexive Banach is isomorphic to a subspace of a reflexive indecomposable space. Furthermore, every separable reflexive Banach space is a quotient of a reflexive complementably p -saturated space with 1<p< and of a c 0 saturated space.

DOI : 10.5802/aif.2697
Classification : 46B03, 46B06, 46B70
Keywords: Banach space theory, $\ell _p$ saturated, indecomposable spaces, hereditarily indecomposable spaces, interpolation methods, saturated norms
Mots-clés : espace de Banach, $\ell _p$-saturé, espaces indécomposables, espaces héréditairement indécomposables, méthodes d’interpolation, normes saturées
Argyros, Spiros A. 1 ; Raikoftsalis, Theocharis 1

1 National Technical University of Athens Faculty of Applied Sciences Department of Mathematics Zografou Campus, 157 80, Athens (Greece)
@article{AIF_2012__62_1_1_0,
     author = {Argyros, Spiros A. and Raikoftsalis, Theocharis},
     title = {The cofinal property of the reflexive indecomposable {Banach} spaces},
     journal = {Annales de l'Institut Fourier},
     pages = {1--45},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {62},
     number = {1},
     year = {2012},
     doi = {10.5802/aif.2697},
     zbl = {1253.46009},
     mrnumber = {2986263},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2697/}
}
TY  - JOUR
AU  - Argyros, Spiros A.
AU  - Raikoftsalis, Theocharis
TI  - The cofinal property of the reflexive indecomposable Banach spaces
JO  - Annales de l'Institut Fourier
PY  - 2012
SP  - 1
EP  - 45
VL  - 62
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2697/
DO  - 10.5802/aif.2697
LA  - en
ID  - AIF_2012__62_1_1_0
ER  - 
%0 Journal Article
%A Argyros, Spiros A.
%A Raikoftsalis, Theocharis
%T The cofinal property of the reflexive indecomposable Banach spaces
%J Annales de l'Institut Fourier
%D 2012
%P 1-45
%V 62
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2697/
%R 10.5802/aif.2697
%G en
%F AIF_2012__62_1_1_0
Argyros, Spiros A.; Raikoftsalis, Theocharis. The cofinal property of the reflexive indecomposable Banach spaces. Annales de l'Institut Fourier, Tome 62 (2012) no. 1, pp. 1-45. doi : 10.5802/aif.2697. http://www.numdam.org/articles/10.5802/aif.2697/

[1] Alspach, Dale E.; Argyros, Spiros A. Complexity of weakly null sequences, Dissertationes Math. (Rozprawy Mat.), Volume 321 (1992), pp. 44 | MR | Zbl

[2] Amir, D.; Lindenstrauss, J. The structure of weakly compact sets in Banach spaces, Ann. of Math. (2), Volume 88 (1968), pp. 35-46 | DOI | MR | Zbl

[3] Argyros, Spiros A.; Dodos, Pandelis Genericity and amalgamation of classes of Banach spaces, Adv. Math., Volume 209 (2007) no. 2, pp. 666-748 | DOI | MR

[4] Argyros, Spiros A.; Felouzis, V. Interpolating hereditarily indecomposable Banach spaces, J. Amer. Math. Soc., Volume 13 (2000) no. 2, p. 243-294 (electronic) | DOI | MR

[5] Argyros, Spiros A.; Godefroy, Gilles; Rosenthal, Haskell P. Descriptive set theory and Banach spaces, Handbook of the geometry of Banach spaces, Vol. 2, North-Holland, Amsterdam, 2003, pp. 1007-1069 | DOI | MR

[6] Argyros, Spiros A.; Haydon, Richard G. A hereditarily indecomposable -space that solves the scalar-plus-compact problem, Acta Math., Volume 206 (2011) no. 1, pp. 1-54 | DOI | MR

[7] Argyros, Spiros A.; Mercourakis, S.; Tsarpalias, A. Convex unconditionality and summability of weakly null sequences, Israel J. Math., Volume 107 (1998), pp. 157-193 | DOI | MR | Zbl

[8] Argyros, Spiros A.; Todorcevic, Stevo Ramsey methods in analysis, Advanced Courses in Mathematics. CRM Barcelona, Birkhäuser Verlag, Basel, 2005 | MR

[9] Argyros, Spiros A.; Tolias, Andreas Methods in the theory of hereditarily indecomposable Banach spaces, Mem. Amer. Math. Soc., Volume 170 (2004) no. 806, pp. vi+114 | MR

[10] Davis, W. J.; Figiel, T.; Johnson, W. B.; Pełczyński, A. Factoring weakly compact operators, J. Functional Analysis, Volume 17 (1974), pp. 311-327 | DOI | MR | Zbl

[11] Gasparis, I. New examples of c 0 -saturated Banach spaces, Math. Ann., Volume 344 (2009) no. 2, pp. 491-500 | DOI | MR

[12] Gasparis, I. New examples of c 0 -saturated Banach spaces. II, J. Funct. Anal., Volume 256 (2009) no. 11, pp. 3830-3840 | DOI | MR

[13] Gowers, W. T.; Maurey, B. The unconditional basic sequence problem, J. Amer. Math. Soc., Volume 6 (1993) no. 4, pp. 851-874 | DOI | MR | Zbl

[14] Grothendieck, A. Critères de compacité dans les espaces fonctionnels généraux, Amer. J. Math., Volume 74 (1952), pp. 168-186 | DOI | MR | Zbl

[15] Leung, Denny H. Some stability properties of c 0 -saturated spaces, Math. Proc. Cambridge Philos. Soc., Volume 118 (1995) no. 2, pp. 287-301 | DOI | MR | Zbl

[16] Lindenstrauss, J. On non separable reflexive Banach spaces, Bull. Amer. Math. Soc., Volume 72 (1966), pp. 967-970 | DOI | MR | Zbl

[17] Lindenstrauss, J. Some open problems in Banach space theory, Sémin. Choquet, 15e Année 1975/76, Initiation à l’Analyse, Exposé 18, 9 p. (1977), 1977 | Numdam | Zbl

[18] Lopez-Abad, J.; Manoussakis, A. A classification of Tsirelson type spaces, Canad. J. Math., Volume 60 (2008) no. 5, pp. 1108-1148 | DOI | MR

[19] Neidinger, Richard D. Factoring operators through hereditarily-l p spaces, Banach spaces (Columbia, Mo., 1984) (Lecture Notes in Math.), Volume 1166, Springer, Berlin, 1985, pp. 116-128 | DOI | MR

[20] Neidinger, Richard Dean Properties of Tauberian Operators on Banach Spaces (semi-embedding, factorization, functional), ProQuest LLC, Ann Arbor, MI, 1984 Thesis (Ph.D.)–The University of Texas at Austin | MR

[21] Rosenthal, Haskell P. A characterization of Banach spaces containing l 1 , Proc. Nat. Acad. Sci. U.S.A., Volume 71 (1974), pp. 2411-2413 | DOI | MR | Zbl

[22] Sobczyk, Andrew Projection of the space (m) on its subspace (c 0 ), Bull. Amer. Math. Soc., Volume 47 (1941), pp. 938-947 | DOI | MR | Zbl

[23] Zippin, M. Banach spaces with separable duals, Trans. Amer. Math. Soc., Volume 310 (1988) no. 1, pp. 371-379 | DOI | MR | Zbl

Cité par Sources :