Nous décrivons un repère mobile non local pour les courbes de spineurs purs dans , et la base correspondante d’invariants différentiels. Nous montrons que l’espace des invariants différentiels de type Schwarzien définit une sous-variété de crochets de Poisson géométriques de spineurs purs. La restriction résultante est donnée par un systéme découplé de crochets de Poisson de KdV . Nous définissons une généralisation de l’évolution de Schwarz-KdV pour les courbes de spineurs purs et nous montrons que, en restriction à un niveau fixé, cela induit un système d’équations de KdV découplé pour les invariants de type projectif. Nous décrivons par ailleurs la transformation correspondante de Miura et le système non commutatif modifié de KdV.
In this paper we describe a non-local moving frame along a curve of pure spinors in , and its associated basis of differential invariants. We show that the space of differential invariants of Schwarzian-type define a Poisson submanifold of the spinor Geometric Poisson brackets. The resulting restriction is given by a decoupled system of KdV Poisson structures. We define a generalization of the Schwarzian-KdV evolution for pure spinor curves and we prove that it induces a decoupled system of KdV equations on the invariants of projective type, when restricted to a certain level set. We also describe its associated Miura transformation and non-commutative modified KdV system.
Keywords: Moving frame, spinor evolutions, geometric Poisson brackets, KdV equations, differential invariants, Miura transformation, non-commutative modified KdV system
Mot clés : repères mobiles, evolution de spineurs, crochet de Poisson géométriques, équations de KdV, invariants différentiels, transformation de Miura, système non commutatif modifié de KdV
@article{AIF_2011__61_6_2405_0, author = {Mar{\'\i} Beffa, Gloria}, title = {Moving frames, {Geometric} {Poisson} brackets and the {KdV-Schwarzian} evolution of pure spinors}, journal = {Annales de l'Institut Fourier}, pages = {2405--2434}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {6}, year = {2011}, doi = {10.5802/aif.2678}, zbl = {1245.53066}, mrnumber = {2976316}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2678/} }
TY - JOUR AU - Marí Beffa, Gloria TI - Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors JO - Annales de l'Institut Fourier PY - 2011 SP - 2405 EP - 2434 VL - 61 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2678/ DO - 10.5802/aif.2678 LA - en ID - AIF_2011__61_6_2405_0 ER -
%0 Journal Article %A Marí Beffa, Gloria %T Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors %J Annales de l'Institut Fourier %D 2011 %P 2405-2434 %V 61 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2678/ %R 10.5802/aif.2678 %G en %F AIF_2011__61_6_2405_0
Marí Beffa, Gloria. Moving frames, Geometric Poisson brackets and the KdV-Schwarzian evolution of pure spinors. Annales de l'Institut Fourier, Tome 61 (2011) no. 6, pp. 2405-2434. doi : 10.5802/aif.2678. http://www.numdam.org/articles/10.5802/aif.2678/
[1] Bi-Hamiltonian operators, integrable flows of curves using moving frames and geometric map equations, J. Phys. A, Volume 39 (2006) no. 9, pp. 2043-2072 | DOI | MR | Zbl
[2] Hamiltonian flows of curves in and vector soliton equations of mKdV and sine-Gordon type, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 2 (2006), pp. Paper 044, 17 pp. (electronic) | DOI | MR | Zbl
[3] Conformal circles and parametrizations of curves in conformal manifolds, Proc. Amer. Math. Soc., Volume 108 (1990) no. 1, pp. 215-221 | DOI | Zbl
[4] Complex paraconformal manifolds—their differential geometry and twistor theory, Forum Math., Volume 3 (1991) no. 1, pp. 61-103 | DOI | MR | Zbl
[5] Remarks on KdV-type flows on star-shaped curves, Phys. D, Volume 238 (2009) no. 8, pp. 788-797 | DOI | MR | Zbl
[6] La Méthode du Repère Mobile, la Théorie des Groupes Continus et les Espaces Généralisés, Exposés de Géométrie, Volume 5, Hermann, Paris, 1935 | Zbl
[7] Les espaces à connexion conforme, Oeuvres Complètes, Volume III.1, Gauthier-Villars, Paris, 1955, pp. 747-797
[8] Integrable equations arising from motions of plane curves, Phys. D, Volume 162 (2002) no. 1-2, pp. 9-33 | DOI | MR | Zbl
[9] Integrable equations arising from motions of plane curves. II, J. Nonlinear Sci., Volume 13 (2003) no. 5, pp. 487-517 | DOI | MR | Zbl
[10] Lie algebras and equations of Korteweg-de Vries type, Current problems in mathematics, Vol. 24 (Itogi Nauki i Tekhniki), Akad. Nauk SSSR Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1984, pp. 81-180 | MR | Zbl
[11] Hydrodynamics of weakly deformed soliton lattices. Differential geometry and Hamiltonian theory, Uspekhi Mat. Nauk, Volume 44 (1989) no. 6(270), p. 29-98, 203 | DOI | MR | Zbl
[12] Geometric Poisson brackets on Grassmannian and conformal spheres (submitted)
[13] Moving coframes. I. A practical algorithm, Acta Appl. Math., Volume 51 (1998) no. 2, pp. 161-213 | DOI | MR | Zbl
[14] Moving coframes. II. Regularization and theoretical foundations, Acta Appl. Math., Volume 55 (1999) no. 2, pp. 127-208 | DOI | MR | Zbl
[15] The Conformal Theory of Curves, Transactions of the AMS, Volume 51 (1942), pp. 435-568 | MR | Zbl
[16] Group actions on chains of Banach manifolds and applications to fluid dynamics, Ann. Global Anal. Geom., Volume 31 (2007) no. 3, pp. 287-328 | DOI | MR | Zbl
[17] The moving frame, differential invariants and rigidity theorems for curves in homogeneous spaces, Duke Math. J., Volume 45 (1978) no. 4, pp. 735-779 http://projecteuclid.org/getRecord?id=euclid.dmj/1077313097 | DOI | MR | Zbl
[18] On Cartan’s method of Lie groups and moving frames as applied to uniqueness and existence questions in differential geometry, Duke Math. J., Volume 41 (1974), pp. 775-814 | DOI | MR | Zbl
[19] A soliton on a vortex filament, J. Fluid Mechanics, Volume 51 (1972), pp. 477-485 | DOI | Zbl
[20] Integrable systems, Oxford Graduate Texts in Mathematics, 4, The Clarendon Press Oxford University Press, New York, 1999 (Twistors, loop groups, and Riemann surfaces, Lectures from the Instructional Conference held at the University of Oxford, Oxford, September 1997) | MR | Zbl
[21] A new flow on starlike curves in , Proc. Amer. Math. Soc., Volume 130 (2002) no. 9, p. 2725-2735 (electronic) | DOI | MR | Zbl
[22] Generation properties of differential invariants in the moving frame methods (preprint http://hal.inria.fr/inria-00194528/en)
[23] Infinite-dimensional groups, their representations, orbits, invariants, Proceedings of the International Congress of Mathematicians (Helsinki, 1978), Acad. Sci. Fennica, Helsinki (1980), pp. 705-708 | MR | Zbl
[24] Poisson geometry of the filament equation, J. Nonlinear Sci., Volume 1 (1991) no. 1, pp. 71-93 | DOI | MR | Zbl
[25] Geometric realizations of Fordy-Kulish nonlinear Schrödinger systems, Pacific J. Math., Volume 195 (2000) no. 1, pp. 157-178 | DOI | MR | Zbl
[26] Evolution of curvature invariants and lifting integrability, J. Geom. Phys., Volume 56 (2006) no. 8, pp. 1294-1325 | DOI | MR | Zbl
[27] Poisson structures for geometric curve flows in semi-simple homogeneous spaces, Regul. Chaotic Dyn., Volume 15 (2010) no. 4-5, pp. 532-550 | DOI | MR
[28] Integrable systems in three-dimensional Riemannian geometry, J. Nonlinear Sci., Volume 12 (2002) no. 2, pp. 143-167 | DOI | MR | Zbl
[29] On completely integrable geometric evolutions of curves of Lagrangian planes, Proc. Roy. Soc. Edinburgh Sect. A, Volume 137 (2007) no. 1, pp. 111-131 | DOI | MR | Zbl
[30] Geometric Poisson brackets in flat semisimple homogenous spaces, Asian Journal of Mathematics, Volume 12 (2008) no. 1, pp. 1-33 | MR | Zbl
[31] Geometric realizations of bi-Hamiltonian completely integrable systems, SIGMA Symmetry Integrability Geom. Methods Appl., Volume 4 (2008), pp. Paper 034, 23 | DOI | MR | Zbl
[32] Projective-type differential invariants and geometric curve evolutions of KdV-type in flat homogeneous manifolds, Ann. Inst. Fourier (Grenoble), Volume 58 (2008) no. 4, pp. 1295-1335 | DOI | Numdam | MR | Zbl
[33] On bi-Hamiltonian flows and their realizations as curves in real homogeneous manifold, Pacific Journal of Mathematics, Volume 247 (2010) no. 1, pp. 163-188 | DOI | MR | Zbl
[34] Equivalence, invariants, and symmetry, Cambridge University Press, Cambridge, 1995 | DOI | MR | Zbl
[35] Lagrange Schwarzian derivative and symplectic Sturm theory, Ann. Fac. Sci. Toulouse Math. (6), Volume 2 (1993) no. 1, pp. 73-96 | DOI | Numdam | MR | Zbl
[36] Projective differential geometry old and new, Cambridge Tracts in Mathematics, 165, Cambridge University Press, Cambridge, 2005 (From the Schwarzian derivative to the cohomology of diffeomorphism groups) | MR | Zbl
[37] Integrable systems in -dimensional Riemannian geometry, Mosc. Math. J., Volume 3 (2003) no. 4, pp. 1369-1393 | MR | Zbl
[38] The geometry of the KdV equation, Internat. J. Modern Phys. A, Volume 6 (1991) no. 16, pp. 2859-2869 Topological methods in quantum field theory (Trieste, 1990) | DOI | MR | Zbl
[39] Integrable systems associated to curves in flat Galilean and Minkowski spaces, Appl. Anal., Volume 89 (2010) no. 4, pp. 571-592 | DOI | MR | Zbl
[40] Completely integrable curve flows on adjoint orbits, Results Math., Volume 40 (2001) no. 1-4, pp. 286-309 (Dedicated to Shiing-Shen Chern on his 90th birthday) | MR | Zbl
[41] Schrödinger flows on Grassmannians, Integrable systems, geometry, and topology (AMS/IP Stud. Adv. Math.), Volume 36, Amer. Math. Soc., Providence, RI, 2006, pp. 235-256 | MR | Zbl
Cité par Sources :