Nous déterminons le type des fonctions zéta et la gamme des dimensions des espaces des modules des modèles plats finis des représentations galoisiennes locales à deux dimensions sur corps finis. Cela donne une généralisation du théorème de Raynaud sur l’unicité de modèles plats finis dans les petites ramifications.
We determine the type of the zeta functions and the range of the dimensions of the moduli spaces of finite flat models of two-dimensional local Galois representations over finite fields. This gives a generalization of Raynaud’s theorem on the uniqueness of finite flat models in low ramifications.
Keywords: Group scheme, moduli space, $p$-adic field
Mot clés : schéma en groupes, espace de moduli, corps $p$-adique
@article{AIF_2011__61_5_1943_0, author = {Imai, Naoki}, title = {Ramification and moduli spaces of finite flat models}, journal = {Annales de l'Institut Fourier}, pages = {1943--1975}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {5}, year = {2011}, doi = {10.5802/aif.2662}, zbl = {1279.11112}, mrnumber = {2961844}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2662/} }
TY - JOUR AU - Imai, Naoki TI - Ramification and moduli spaces of finite flat models JO - Annales de l'Institut Fourier PY - 2011 SP - 1943 EP - 1975 VL - 61 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2662/ DO - 10.5802/aif.2662 LA - en ID - AIF_2011__61_5_1943_0 ER -
%0 Journal Article %A Imai, Naoki %T Ramification and moduli spaces of finite flat models %J Annales de l'Institut Fourier %D 2011 %P 1943-1975 %V 61 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2662/ %R 10.5802/aif.2662 %G en %F AIF_2011__61_5_1943_0
Imai, Naoki. Ramification and moduli spaces of finite flat models. Annales de l'Institut Fourier, Tome 61 (2011) no. 5, pp. 1943-1975. doi : 10.5802/aif.2662. http://www.numdam.org/articles/10.5802/aif.2662/
[1] On the connected components of moduli spaces of finite flat models, Amer. J. of Math., Volume 132 (2010) no. 5, pp. 1189-1204 | DOI | MR | Zbl
[2] Moduli of finite flat group schemes, and modularity, Ann. of Math. (2), Volume 170 (2009) no. 3, pp. 1085-1180 | DOI | MR | Zbl
[3] Schémas en groupes de type , Bull. Soc. Math. France, Volume 102 (1974), pp. 241-280 | Numdam | MR | Zbl
Cité par Sources :