Le but de ce travail est d’accomplir le premier pas de notre programme vers la conjecture principale pour , par la methode de congruences entre séries d’Eisenstein sur , où est d’un corps quadratique imaginaire. Nous construisons une famille -adique de séries d’Eisenstein ordinaires sur le groupe de similitudes unitaires avec le terme constant optimal qui est essentiellement le produit de la fonction -adique de Kubota-Leopoldt et d’une fonction -adique pour . Cette construction donne ainsi un nouveau point de vue sur la fonction -adique de .
The purpose of this work is to carry out the first step in our four-step program towards the main conjecture for by the method of Eisenstein congruence on , where is an imaginary quadratic field. We construct a -adic family of ordinary Eisenstein series on the group of unitary similitudes with the optimal constant term which is basically the product of the Kubota-Leopodlt -adic -function and a -adic -function for . This construction also provides a different point of view of -adic -functions of .
Keywords: Eisenstein series on unitary groups, Iwasawa-Greenberg main conjectures
Mot clés : Les séries d’Eisenstein sur les groupes unitaires, la conjecture principale de Iwasawa-Greenberg
@article{AIF_2011__61_3_987_0, author = {Hsieh, Ming-Lun}, title = {Ordinary $p$-adic {Eisenstein} series and $p$-adic $L$-functions for unitary groups}, journal = {Annales de l'Institut Fourier}, pages = {987--1059}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {3}, year = {2011}, doi = {10.5802/aif.2635}, zbl = {1271.11051}, mrnumber = {2918724}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2635/} }
TY - JOUR AU - Hsieh, Ming-Lun TI - Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups JO - Annales de l'Institut Fourier PY - 2011 SP - 987 EP - 1059 VL - 61 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2635/ DO - 10.5802/aif.2635 LA - en ID - AIF_2011__61_3_987_0 ER -
%0 Journal Article %A Hsieh, Ming-Lun %T Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups %J Annales de l'Institut Fourier %D 2011 %P 987-1059 %V 61 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2635/ %R 10.5802/aif.2635 %G en %F AIF_2011__61_3_987_0
Hsieh, Ming-Lun. Ordinary $p$-adic Eisenstein series and $p$-adic $L$-functions for unitary groups. Annales de l'Institut Fourier, Tome 61 (2011) no. 3, pp. 987-1059. doi : 10.5802/aif.2635. http://www.numdam.org/articles/10.5802/aif.2635/
[1] Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 1-64 | DOI | MR | Zbl
[2] Compactification of Siegel moduli schemes, London Mathematical Society Lecture Note Series, 107, Cambridge University Press, Cambridge, 1985 | MR | Zbl
[3] Methods for -adic monodromy, J. Inst. Math. Jussieu, Volume 7 (2008) no. 2, pp. 247-268 | DOI | MR | Zbl
[4] Motivic -adic -functions, -functions and arithmetic (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 153, Cambridge Univ. Press, Cambridge, 1991, pp. 141-172 | MR | Zbl
[5] Degeneration of abelian varieties, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), 22, Springer-Verlag, Berlin, 1990 (with an appendix by David Mumford) | MR | Zbl
[6] Explicit constructions of automorphic -functions, Lecture Notes in Mathematics, 1254, Springer-Verlag, Berlin, 1987 | MR | Zbl
[7] Iwasawa theory and -adic deformations of motives, Motives (Seattle, WA, 1991) (Proc. Sympos. Pure Math.), Volume 55, Amer. Math. Soc., Providence, RI, 1994, pp. 193-223 | MR | Zbl
[8] Schémas en groupes. II: Groupes de type multiplicatif, et structure des schémas en groupes généraux, Séminaire de Géométrie Algébrique du Bois Marie 1962/64 (SGA 3). Dirigé par M. Demazure et A. Grothendieck, Lecture Notes in Mathematics, 152, Springer-Verlag, Berlin, 1962/1964 | MR
[9] Eisenstein series on Shimura varieties, Ann. of Math. (2), Volume 119 (1984) no. 1, pp. 59-94 | DOI | MR | Zbl
[10] -adic -functions for unitary Shimura varieties. I. Construction of the Eisenstein measure, Doc. Math., Volume Extra Vol. (2006), p. 393-464 (electronic) | MR | Zbl
[11] Elementary theory of -functions and Eisenstein series, London Mathematical Society Student Texts, 26, Cambridge University Press, Cambridge, 1993 | MR | Zbl
[12] Control theorems of coherent sheaves on Shimura varieties of PEL type, J. Inst. Math. Jussieu, Volume 1 (2002) no. 1, pp. 1-76 | DOI | MR | Zbl
[13] -adic automorphic forms on Shimura varieties, Springer Monographs in Mathematics, Springer-Verlag, New York, 2004 | MR | Zbl
[14] Katz -adic -functions, congruence modules and deformation of Galois representations, -functions and arithmetic (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 153, Cambridge Univ. Press, Cambridge, 1991, pp. 271-293 | MR | Zbl
[15] -adic -functions for CM fields, Invent. Math., Volume 49 (1978) no. 3, pp. 199-297 | DOI | MR | Zbl
[16] Points on some Shimura varieties over finite fields, Journal of AMS, Volume 5 (1992) no. 2, pp. 373-443 | MR | Zbl
[17] Nonvanishing theorems for the cohomology of certain arithmetic quotients, J. Reine Angew. Math., Volume 428 (1992), pp. 177-217 | DOI | MR | Zbl
[18] Class fields of abelian extensions of , Invent. Math., Volume 76 (1984) no. 2, pp. 179-330 | DOI | MR | Zbl
[19] Spectral decomposition and Eisenstein series, Cambridge Tracts in Mathematics, 113, Cambridge University Press, Cambridge, 1995 (Une paraphrase de l’Écriture [A paraphrase of Scripture]) | MR | Zbl
[20] A modular construction of unramified -extensions of , Invent. Math., Volume 34 (1976) no. 3, pp. 151-162 | DOI | MR | Zbl
[21] Confluent hypergeometric functions on tube domains, Math. Ann., Volume 260 (1982) no. 3, pp. 269-302 | DOI | MR | Zbl
[22] Euler products and Eisenstein series, CBMS Regional Conference Series in Mathematics, 93, published for the Conference Board of the Mathematical Sciences, Washington, DC, 1997 | MR
[23] Complex multiplication of abelian varieties and its applications to number theory, Publications of the Mathematical Society of Japan, 6, The Mathematical Society of Japan, Tokyo, 1961 | MR | Zbl
[24] Towards Main Conjectures for Modular Forms, RIMS Kokyuroku, Volume 1468 (2006), pp. 149-157 | MR | Zbl
[25] The Iwasawa main conjecture for (Oct 2008) (preprint)
[26] Several-variable -adic families of Siegel-Hilbert cusp eigensystems and their Galois representations, Ann. Sci. École Norm. Sup. (4), Volume 32 (1999) no. 4, pp. 499-574 | Numdam | MR | Zbl
[27] Selmer groups and the Eisenstein-Klingen ideal, Duke Math. J., Volume 106 (2001) no. 3, pp. 485-525 | DOI | MR | Zbl
[28] Groupes de Selmer et Fonctions -adiques pour les Représentations Modulaires Adjointes (2006) (preprint)
[29] The Iwasawa conjecture for totally real fields, Ann. of Math. (2), Volume 131 (1990) no. 3, pp. 493-540 | DOI | MR | Zbl
[30] Fourier-Jacobi Expansion of Eisenstein series on nonsplit unitary groups, Columbia University (2007) (Ph. D. Thesis)
Cité par Sources :