Nous considérons la décomposition d’un espace symétrique de type compact et nous montrons que les facteurs de rang 1, considérés comme sous-variétés de cet espace, sont isolés de toutes les sous-variétés minimales inéquivalentes.
We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
Keywords: Minimal submanifolds, rigidity, symmetric spaces.
Mot clés : sous-varietés minimales, rigidité, espaces symétriques.
@article{AIF_2011__61_2_491_0, author = {Clarke, Andrew}, title = {Rigidity of {Rank-One} {Factors} of {Compact} {Symmetric} {Spaces}}, journal = {Annales de l'Institut Fourier}, pages = {491--509}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {61}, number = {2}, year = {2011}, doi = {10.5802/aif.2621}, zbl = {1231.53044}, mrnumber = {2895065}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2621/} }
TY - JOUR AU - Clarke, Andrew TI - Rigidity of Rank-One Factors of Compact Symmetric Spaces JO - Annales de l'Institut Fourier PY - 2011 SP - 491 EP - 509 VL - 61 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2621/ DO - 10.5802/aif.2621 LA - en ID - AIF_2011__61_2_491_0 ER -
%0 Journal Article %A Clarke, Andrew %T Rigidity of Rank-One Factors of Compact Symmetric Spaces %J Annales de l'Institut Fourier %D 2011 %P 491-509 %V 61 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2621/ %R 10.5802/aif.2621 %G en %F AIF_2011__61_2_491_0
Clarke, Andrew. Rigidity of Rank-One Factors of Compact Symmetric Spaces. Annales de l'Institut Fourier, Tome 61 (2011) no. 2, pp. 491-509. doi : 10.5802/aif.2621. http://www.numdam.org/articles/10.5802/aif.2621/
[1] An extrinsic rigidity theorem for minimal immersions of into , J. Diff. Geom., Volume 14 (1979), pp. 355-368 | MR | Zbl
[2] Riemannian Symmetric Spaces of Rank One, Marcel Dekker Inc., New York, 1972 | MR | Zbl
[3] Minimal submanifolds of the sphere with second fundamental form of constant length, Functional Analysis and Related Fields, Springer Verlag, 1970 | MR | Zbl
[4] Some rigidity theorems for minimal submanifolds of the sphere, Acta Math., Volume 145 (1980), pp. 29-46 | DOI | MR | Zbl
[5] Calibrated geometries in Grassmann manifolds, Comment Math. Helv., Volume 64 (1989), pp. 256-268 | DOI | MR | Zbl
[6] Examples of codimension-one closed minimal submanifolds in some symmetric spaces. I., J. Diff. Geom., Volume 15 (1980), pp. 543-551 | MR | Zbl
[7] Foundations of Differential Geometry, 2, Interscience, New York, 1969 | Zbl
[8] Complete minimal surfaces in , Ann. of Math., Volume 92 (1970), pp. 335-374 | DOI | MR | Zbl
[9] Rigidity theorems in rank-1 symmetric spaces, J. Diff. Geom., Volume 4 (1970), pp. 349-357 | MR | Zbl
[10] Geometric Superrigidity, J. Diff. Geom., Volume 113 (1993) no. 1, pp. 57-83 | MR | Zbl
[11] Lecture Notes on Geometric Measure Theory, Australian National University, 1983
[12] Minimal varieties in riemannian manifolds, Ann. Math., Volume 88 (1968), pp. 65-105 | DOI | MR | Zbl
[13] Minimal real currents on compact riemannian manifolds, Math. USSR Izv., Volume 11 (1970), pp. 807-820 | DOI | Zbl
Cité par Sources :