Nous construisons des barrières géométriques dans
Nous prouvons l’existence et l’unicité d’une solution de l’équation du graphe vertical minimal sur l’intérieur d’un polyhèdre convexe de
Dans
Nous prouvons l’existence d’une autre hypersurface de type Scherk, donnée par la solution de l’équation du graphe vertical minimal sur l’intérieur d’un certain polyhèdre admissible prenant alternativement les valeurs
Nous établissons des resultats analogues pour des graphes minimaux dans
We construct geometric barriers for minimal graphs in
We prove the existence and uniqueness of a solution of the vertical minimal equation in the interior of a convex polyhedron in
In
We prove the existence of another Scherk type hypersurface, given by the solution of the vertical minimal equation in the interior of certain admissible polyhedron taking alternatively infinite values
We establish analogous results for minimal graphs when the ambient is the Euclidean space
Keywords: Dirichlet problem, minimal equation, vertical graph, Perron process, barrier, convex domain, asymptotic boundary, translation hypersurface, Scherk hypersurface
Mot clés : problème de Dirichlet, équation de surface minimale, graphe vertical, processus de Perron, barrière, domaine convexe, bord asymptotique, hypersurface de translation, hypersurface de Scherk
@article{AIF_2010__60_7_2373_0, author = {S\`a Earp, Ricardo and Toubiana, Eric}, title = {Minimal {Graphs} in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$}, journal = {Annales de l'Institut Fourier}, pages = {2373--2402}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {7}, year = {2010}, doi = {10.5802/aif.2611}, zbl = {1225.53060}, mrnumber = {2849265}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2611/} }
TY - JOUR AU - Sà Earp, Ricardo AU - Toubiana, Eric TI - Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$ JO - Annales de l'Institut Fourier PY - 2010 SP - 2373 EP - 2402 VL - 60 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2611/ DO - 10.5802/aif.2611 LA - en ID - AIF_2010__60_7_2373_0 ER -
%0 Journal Article %A Sà Earp, Ricardo %A Toubiana, Eric %T Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$ %J Annales de l'Institut Fourier %D 2010 %P 2373-2402 %V 60 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2611/ %R 10.5802/aif.2611 %G en %F AIF_2010__60_7_2373_0
Sà Earp, Ricardo; Toubiana, Eric. Minimal Graphs in $\mathbb{H}^n\times \mathbb{R}$ and $\mathbb{R}^{n+1}$. Annales de l'Institut Fourier, Tome 60 (2010) no. 7, pp. 2373-2402. doi : 10.5802/aif.2611. https://www.numdam.org/articles/10.5802/aif.2611/
[1] Complete minimal varieties in hyperbolic space, Invent. Math., Volume 69 (1982) no. 3, pp. 477-494 | DOI | MR | Zbl
[2] Complete minimal hypersurfaces in hyperbolic
[3] Minimal hypersurfaces in
[4] Methods of mathematical physics. Vol. II, Wiley Classics Library, John Wiley & Sons Inc., New York, 1989 (Partial differential equations, Reprint of the 1962 original, A Wiley-Interscience Publication) | MR | Zbl
[5] Hypersurfaces de type Scherk (Univ. Paris 12)
[6] Parabolic and Hyperbolic Screw motion in
[7] Existence and uniqueness of minimal graphs in hyperbolic space, Asian J. Math., Volume 4 (2000), pp. 669-694 | MR | Zbl
[8] An asymptotic theorem for minimal surfaces and existence results for minimal graphs in
[9] Introduction à la géométrie hyperbolique et aux surfaces de Riemann, Cassini, 2009 | Zbl
[10] Elliptic partial differential equations of second order, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 224, Springer-Verlag, Berlin, 1983 | MR | Zbl
[11] Infinite boundary value problems for constant mean curvature graphs in
[12] The Dirichlet problem for the minimal surface equation in higher dimensions, J. Reine Angew. Math., Volume 229 (1968), pp. 170-187 | DOI | MR | Zbl
[13] The Dirichlet problem for the minimal surface equation – with possible infinite boundary data – over domains in a Riemannian manifold (1–60, arXiv: 0806.0498v1, 2008)
[14] Minimal surfaces in
[15]
[16] Interior gradient estimates and existence theorems for constant mean curvature graphs in
Cité par Sources :