On démontre que la multiplicité algébrique d’une singularité d’un champ de vecteurs holomorphe est invariante par -equivalences.
We prove that the algebraic multiplicity of a holomorphic vector field at an isolated singularity is invariant by equivalences.
Keywords: Algebraic multiplicity, holomorphic vector field, holomorphic foliation
Mot clés : multiplicité algébrique, champ de vecteurs holomorphique, feuilletage holomorphique
@article{AIF_2010__60_6_2115_0, author = {Rosas, Rudy}, title = {The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field}, journal = {Annales de l'Institut Fourier}, pages = {2115--2135}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {60}, number = {6}, year = {2010}, doi = {10.5802/aif.2578}, zbl = {1209.37057}, mrnumber = {2791652}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2578/} }
TY - JOUR AU - Rosas, Rudy TI - The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field JO - Annales de l'Institut Fourier PY - 2010 SP - 2115 EP - 2135 VL - 60 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2578/ DO - 10.5802/aif.2578 LA - en ID - AIF_2010__60_6_2115_0 ER -
%0 Journal Article %A Rosas, Rudy %T The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field %J Annales de l'Institut Fourier %D 2010 %P 2115-2135 %V 60 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2578/ %R 10.5802/aif.2578 %G en %F AIF_2010__60_6_2115_0
Rosas, Rudy. The $C^1$ invariance of the algebraic multiplicity of a holomorphic vector field. Annales de l'Institut Fourier, Tome 60 (2010) no. 6, pp. 2115-2135. doi : 10.5802/aif.2578. http://www.numdam.org/articles/10.5802/aif.2578/
[1] Riemann surfaces, New York University, 1958 (Notes by Richard Pollack and James Radlow)
[2] Kennzeichnung der schlauchknoten, Abh. Math. Sem. Ham. Univ., Volume 9 (1932), pp. 125-133 | DOI | Zbl
[3] Invariant varieties through singularities of holomorphic vector fields, Ann. Math., Volume 115(3) (1982), pp. 579-595 | DOI | MR | Zbl
[4] Topological invariants and equidesingularization for holomorphic vector fields, J. Differential Geometry, Volume 20 (1984), pp. 143-174 | MR | Zbl
[5] Foundations of modern analysis, enlarged and corrected printing, Academic Press, New York, 1969 | MR | Zbl
[6] Lecture notes on algebraic topology, Springer, Berlin, 1972
[7] The index of a holomorphic flow with an isolated singularity, Math. Ann., Volume 291(4) (1991), pp. 737-751 | MR | Zbl
[8] Formes intégrables holomorphes singuliéres, Astérisque 97, Société Mathématique, Paris, 1982 | Numdam | MR | Zbl
[9] Holonomie et intégrales premiéres, Ann. Sci. École Norm. Sup.(4), Volume 13(4) (1980), pp. 469-523 | Numdam | MR | Zbl
[10] Lecture notes on algebraic topology, University Press of Virginia, Charlottesville, 1965
[11] Boundary behaviour of conformal maps, Grundlehren der Mathematischen Wissenschaften 299, A Series of Comprehensive Studies in Mathematics, Springer-Verlag, 1992 | MR | Zbl
[12] On the topological invariance of the algebraic multiplicity of a holomorphic vector field, IMPA, Rio de Janeiro (2005) (Ph. D. Thesis)
[13] Real and complex analysis, Tata McGraw-Hill, New Delhi, 1979 | Zbl
[14] Partial Differential Equations I, Springer, New York, 1996 | MR | Zbl
[15] On the topology of algebroid singularities, Amer. Journ. of Math., Volume 54 (1932), pp. 453-465 | DOI | JFM | MR | Zbl
Cité par Sources :