Changements de base explicites des représentations supercuspidales de U(1,1)(F 0 )
Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 905-938.

Soit F 0 un corps local non archimédien de caractéristique nulle et de caractéristique résiduelle impaire. On décrit explicitement les changements de base des représentations supercuspidales de U(1,1)(F 0 ). C’est une étape vers la description du changement de base des paquets endoscopiques supercuspidaux de U(2,1)(F 0 ).

Let F 0 be a nonarchimedean local field of characterisitic 0 and odd residual characteristic. We describe explicitly the two base change lifts of supercuspidal representations of U(1,1)(F 0 ). This represents a step towards the goal of describing base change of endoscopic supercuspidal L-packets of U(2,1)(F 0 ).

DOI : 10.5802/aif.2542
Classification : 22E50, 11F70
Mot clés : corps local, changement de base, groupe unitaire, représentations supercuspidales, $L$-paquets
Keywords: Local field, base change, unitary group, supercuspidal representations, $L$-packets
Blasco, Laure 1

1 Université Paris-Sud Département de Mathématiques U.M.R. 8628 du C.N.R.S. Bâtiment 425 91405 Orsay cedex (France)
@article{AIF_2010__60_3_905_0,
     author = {Blasco, Laure},
     title = {Changements de base explicites  des repr\'esentations supercuspidales de $U(1,1)(F_0)$},
     journal = {Annales de l'Institut Fourier},
     pages = {905--938},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {60},
     number = {3},
     year = {2010},
     doi = {10.5802/aif.2542},
     zbl = {1210.22009},
     mrnumber = {2680819},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/aif.2542/}
}
TY  - JOUR
AU  - Blasco, Laure
TI  - Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$
JO  - Annales de l'Institut Fourier
PY  - 2010
SP  - 905
EP  - 938
VL  - 60
IS  - 3
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2542/
DO  - 10.5802/aif.2542
LA  - fr
ID  - AIF_2010__60_3_905_0
ER  - 
%0 Journal Article
%A Blasco, Laure
%T Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$
%J Annales de l'Institut Fourier
%D 2010
%P 905-938
%V 60
%N 3
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2542/
%R 10.5802/aif.2542
%G fr
%F AIF_2010__60_3_905_0
Blasco, Laure. Changements de base explicites  des représentations supercuspidales de $U(1,1)(F_0)$. Annales de l'Institut Fourier, Tome 60 (2010) no. 3, pp. 905-938. doi : 10.5802/aif.2542. http://www.numdam.org/articles/10.5802/aif.2542/

[1] Adler, J.; Lansky, J. Depth-zero base change for unramified U(2,1), J. Number Theory, Volume 114 (2005), pp. 324-360 | DOI | MR | Zbl

[2] Adler, J.; Lansky, J. Depth-zero base change for ramified U(2,1), 2008 (arXiv :0807.1528v1)

[3] Blasco, L. Description du dual admissible de U(2,1)(F) par la théorie des types de C. Bushnell et P. Kutzko, Manuscripta Math., Volume 107 (2002), pp. 151-186 | DOI | MR | Zbl

[4] Blasco, L. Types, paquets et changement de base : l’exemple de U(2,1)(F 0 ), I, Canadian J. Math., Volume 60 (2008), pp. 790-821 | DOI | MR | Zbl

[5] Bushnell, C.; Henniart, G. Local tame lifting for GL(N) I : simple characters, Publ. Math. IHES, Volume 83 (1996), pp. 105-233 | Numdam | MR | Zbl

[6] Bushnell, C.; Henniart, G. Local tame lifting for GL(n) II : wildly ramified supercuspidals, Astérisque, Soc. Math. France, Volume 254 (1999), pp. vi+105 | Numdam | MR | Zbl

[7] Bushnell, C.; Henniart, G. The local Langlands conjecture for GL (2), Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 335, Springer-Verlag, Berlin, 2006 | MR | Zbl

[8] Ennola, V. On the characters of the finite unitary groups, Ann. Acad. Scien. Fenn., Volume 323 (1963), pp. 1-35 | MR | Zbl

[9] Flicker, Y. Stable and labile base change for U(2), Duke Math. J., Volume 49 (1982), pp. 691-729 | DOI | MR | Zbl

[10] Flicker, Y. On distinguished representations, J. Reine Angew. Math., Volume 418 (1991), pp. 134-172 | MR | Zbl

[11] Fröhlich, A. Principal orders and embedding of local fields in algebras, Proc. London Math. Soc., Volume 54 (1987), pp. 247-266 | DOI | MR | Zbl

[12] Hakim, J.; Murnaghan, F. Two types of distinguished supercuspidal representations, Int. Math. Res. Not., Volume 35 (2002), pp. 1857-1889 | DOI | MR | Zbl

[13] Jacquet, H.; Langlands, R. Automorphic forms on GL (2), Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin, 1970 | MR | Zbl

[14] Kottwitz, R. Rational conjugacy classes on reductive groups, Duke Math. J., Volume 49 (1982), pp. 785-806 | DOI | MR | Zbl

[15] Kutzko, P. C.; Sally, P. J. Jr. All supercuspidal representations of SL over a p-adic field are induced, Representation theory of reductive groups (Park City, Utah, 1982) (Progr. Math.), Volume 40, Birkhäuser, Boston, MA, 1983, pp. 185-196 | Zbl

[16] Labesse, J.-P.; Langlands, R. L-indistinguishability for SL(2), Canadian J. Math., Volume 31 (1979), pp. 726-785 | DOI | MR | Zbl

[17] Morris, L. Tamely ramified supercuspidal representations, Ann. scient. Éc. Norm. Sup., Volume 29 (1996), pp. 639-667 | Numdam | MR | Zbl

[18] Rogawski, J. Automorphic representations of unitary groups in three variables, Annals of Mathematics Studies, 123, Princeton University Press, Princeton, NJ, 1990 | MR | Zbl

[19] Springer, T. A. Characters of special groups, Seminar on Algebraic Groups and Related Finite Groups (The Institute for Advanced Study, Princeton, N.J., 1968/69) (Lecture Notes in Mathematics, Vol. 131), Springer, Berlin, 1970, pp. 121-166 | MR | Zbl

[20] Stevens, S. Double coset decompositions and intertwining, Manuscripta Math., Volume 106 (2001), pp. 349-364 | DOI | MR | Zbl

Cité par Sources :