On décrit des preuves galoisiennes des versions logarithmique et exponentielle de la conjecture de Schanuel, pour les variétés abéliennes sur un corps de fonctions.
We survey recent work on the exponential and logarithmic cases of the functional Schanuel conjecture. Using various differential Galois theories, we present parallel (and sometimes new) proofs in the case of abelian varieties.
Mot clés : théorie de Galois différentielle, indépendance algébrique, variétés abéliennes, cohomologie galoisienne, connexion de Gauss-Manin, dérivées logarithmiques
Keywords: Differential Galois theory, algebraic independence, abelian varieties, Galois cohomology, Gauss-Manin connections, logarithmic derivatives
@article{AIF_2009__59_7_2773_0, author = {Bertrand, Daniel}, title = {Th\'eories de {Galois} diff\'erentielles et transcendance}, journal = {Annales de l'Institut Fourier}, pages = {2773--2803}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {7}, year = {2009}, doi = {10.5802/aif.2507}, mrnumber = {2649338}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.2507/} }
TY - JOUR AU - Bertrand, Daniel TI - Théories de Galois différentielles et transcendance JO - Annales de l'Institut Fourier PY - 2009 SP - 2773 EP - 2803 VL - 59 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2507/ DO - 10.5802/aif.2507 LA - fr ID - AIF_2009__59_7_2773_0 ER -
%0 Journal Article %A Bertrand, Daniel %T Théories de Galois différentielles et transcendance %J Annales de l'Institut Fourier %D 2009 %P 2773-2803 %V 59 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2507/ %R 10.5802/aif.2507 %G fr %F AIF_2009__59_7_2773_0
Bertrand, Daniel. Théories de Galois différentielles et transcendance. Annales de l'Institut Fourier, Tome 59 (2009) no. 7, pp. 2773-2803. doi : 10.5802/aif.2507. http://www.numdam.org/articles/10.5802/aif.2507/
[1] Mumford-Tate groups of mixed Hodge structures and the theorem of the fixed part, Compo Math., Volume 82 (1992), pp. 1-24 | Numdam | MR | Zbl
[2] Une introduction aux motifs (motifs purs, motifs mixtes, périodes), Panoramas et Synthèses, Société Mathématique de France, 2004 no. 17 | MR | Zbl
[3] On Schanuel’s conjecture, Annals of Maths, Volume 93 (1971), pp. 252-268 (Voir aussi : Some topics in differential algebraic geometry I ; Amer. J. Maths, 94, 1972, 1195-1204) | DOI | Zbl
[4] A Schanuel property for exponentially transcendental powers (submitted. Voir aussi : arXiv :0810.4457)
[5] Le groupe de Mumford-Tate des 1-motifs, Ann. Inst. Fourier, Volume 52 (2002), pp. 1041-1059 | DOI | Numdam | MR | Zbl
[6] Extensions de -modules et groupes de Galois différentiels, -adic analysis (Trento, 1989) (Lecture Notes in Math.), Volume 1454, Springer, Berlin, 1990, pp. 125-141 | MR | Zbl
[7] Manin’s theorem of the kernel : a remark on a paper of C-L. Chai, 2008 (accessible sur http://www.math.jussieu.fr/~bertrand/)
[8] Schanuel’s conjecture for non-isoconstant elliptic curves over function fields, Model theory with applications to algebra and analysis. Vol. 1 (London Math. Soc. Lecture Note Ser.), Volume 349, Cambridge Univ. Press, Cambridge, 2008, pp. 41-62 | MR
[9] A Lindemann-Weierstrass theorem for semi-abelian varieties over function fields (à paraître au J. Amer. Math. Soc. Voir aussi arXiv : AG.0810.0383)
[10] Differential algebraic geometry and differential algebraic groups, Selected works of E. Kolchin, AMS, 1999, pp. 567-636
[11] Differential algebraic groups of finite dimension, Lecture Notes in Mathematics. 1506. Berlin etc. : Springer-Verlag. xv, 145 p., 1992 | MR | Zbl
[12] Holomorphic dynamics, Painlevé VI equation and Character Varieties (Voir hal-00186558)
[13] The Galois groupoid of Picard-Painlevé VI equation, Algebraic, analytic and geometric aspects of complex differential equations and their deformations. Painlevé hierarchies (RIMS Kôkyûroku Bessatsu, B2), Res. Inst. Math. Sci. (RIMS), Kyoto, 2007, pp. 15-20 | MR
[14] A note on Manin’s theorem of the kernel, Amer. J. Maths, Volume 113 (1991), pp. 387-389 | DOI | MR | Zbl
[15] Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 (Théorie de Hodge III ; Publ. Math. IHES, 44, 1974, 5–77) | DOI | Numdam | MR | Zbl
[16] Théorie de Hodge irrégulière ; I (1984)) ; II (2006), Correspondance Deligne-Malgrange-Ramis (Documents mathématiques), Volume 5, Société Mathématique de France, 2007
[17] Differential Galois theory of linear difference equations, Math. Ann., Volume 342 (2008), pp. 333-377 | DOI | MR | Zbl
[18] Integral representations for solutions of exponential Gauss-Manin systems, Bull. Soc. Math. France, Volume 136 (2008) no. 4, pp. 505-532 | Numdam | MR | Zbl
[19] Algebraic groups and algebraic dependence, Amer. J. Math., Volume 90 (1968), pp. 1151-1164 | DOI | MR | Zbl
[20] A note on a theorem of Ax, Ann. Pure Appl. Logic, Volume 156 (2008) no. 1, pp. 96-109 | DOI | MR | Zbl
[21] Le groupoïde de Galois d’un feuilletage, Essays on geometry and related topics, Vol. 1, 2 (Monogr. Enseign. Math.), Volume 38, Enseignement Math., Geneva, 2001, pp. 465-501 | MR | Zbl
[22] Differential Galois theory. III. Some inverse problems, Illinois J. Math., Volume 41 (1997) no. 3, pp. 453-461 | MR | Zbl
[23] Differential Galois theory. I, Illinois J. Math., Volume 42 (1998) no. 4, pp. 678-699 | MR | Zbl
[24] Algebraic -groups and differential Galois theory, Pacific J. Math., Volume 216 (2004) no. 2, pp. 343-360 | DOI | MR | Zbl
[25] Cohomologie galoisienne, Lecture Notes in Mathematics, fifth ed., 5, Springer-Verlag, Berlin, 1994 | MR | Zbl
[26] Sur l’équivalence des théories de Galois différentielles générales, C. R. Math. Acad. Sci. Paris, Volume 346 (2008) no. 21-22, pp. 1155-1158 | MR
Cité par Sources :