Il est toujours possible d’injecter dans un espace euclidien le spectre d’une paire de Gelfand du type
The spectrum of a Gelfand pair
Keywords: Gelfand pair, Schwartz space, nilpotent Lie group
Mot clés : paire de Gelfand, classe de Schwartz, groupe de Lie nilpotent
@article{AIF_2009__59_6_2143_0, author = {Fischer, V\'eronique and Ricci, Fulvio}, title = {Gelfand transforms of $SO(3)$-invariant {Schwartz} functions on the free group $N_{3,2}$}, journal = {Annales de l'Institut Fourier}, pages = {2143--2168}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {59}, number = {6}, year = {2009}, doi = {10.5802/aif.2486}, zbl = {1187.43007}, mrnumber = {2640916}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2486/} }
TY - JOUR AU - Fischer, Véronique AU - Ricci, Fulvio TI - Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$ JO - Annales de l'Institut Fourier PY - 2009 SP - 2143 EP - 2168 VL - 59 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2486/ DO - 10.5802/aif.2486 LA - en ID - AIF_2009__59_6_2143_0 ER -
%0 Journal Article %A Fischer, Véronique %A Ricci, Fulvio %T Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$ %J Annales de l'Institut Fourier %D 2009 %P 2143-2168 %V 59 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2486/ %R 10.5802/aif.2486 %G en %F AIF_2009__59_6_2143_0
Fischer, Véronique; Ricci, Fulvio. Gelfand transforms of $SO(3)$-invariant Schwartz functions on the free group $N_{3,2}$. Annales de l'Institut Fourier, Tome 59 (2009) no. 6, pp. 2143-2168. doi : 10.5802/aif.2486. https://www.numdam.org/articles/10.5802/aif.2486/
[1] Gelfand transforms of polyradial Schwartz functions on the Heisenberg group, J. Funct. Anal., Volume 251 (2007) no. 2, pp. 772-791 | DOI | MR | Zbl
[2] Gelfand pairs on the Heisenberg group and Schwartz functions (2008) (to appear, http://arxiv.org/abs/0805.3809v1) | MR | Zbl
[3] On Gelfand pairs associated with solvable Lie groups, Trans. Amer. Math. Soc., Volume 321 (1990) no. 1, pp. 85-116 | DOI | MR | Zbl
[4] The spherical transform of a Schwartz function on the Heisenberg group, J. Funct. Anal., Volume 154 (1998) no. 2, pp. 379-423 | DOI | MR | Zbl
[5] The topology of the spectrum for Gelfand pairs on Lie groups, Bull. Un. Mat. It., Volume 10 (2007), pp. 569-579 (http://arxiv.org/abs/0706.0708v1) | MR
[6] Subelliptic estimates and function spaces on nilpotent Lie groups, Ark. Mat., Volume 13 (1975) no. 2, pp. 161-207 | DOI | MR | Zbl
[7] Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton University Press, Princeton, N.J., 1982 | MR | Zbl
[8] Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal., Volume 36 (1980) no. 2, pp. 205-254 | DOI | MR | Zbl
[9] Liouville’s theorem for homogeneous groups, Comm. Partial Differential Equations, Volume 8 (1983) no. 15, pp. 1665-1677 | MR | Zbl
[10] Representations and invariants of the classical groups, Encyclopedia of Mathematics and its Applications, 68, Cambridge University Press, Cambridge, 1998 | MR | Zbl
[11] Caracterisation des opérateurs hypoelliptiques homogènes invariants à gauche sur un groupe de Lie nilpotent gradué, Comm. Partial Differential Equations, Volume 4 (1979) no. 8, pp. 899-958 | DOI | MR | Zbl
[12] Groups and geometric analysis, Pure and Applied Mathematics, 113, Academic Press Inc., Orlando, FL, 1984 | MR | Zbl
[13] The Radon transform, Progress in Mathematics, 5, Birkhäuser Boston Inc., Boston, MA, 1999 | MR | Zbl
[14] A functional calculus for Rockland operators on nilpotent Lie groups, Studia Math., Volume 78 (1984) no. 3, pp. 253-266 | MR | Zbl
[15] Differentiable invariants, Topology, Volume 16 (1977) no. 2, pp. 145-155 | DOI | MR | Zbl
[16] Smooth functions invariant under the action of a compact Lie group, Topology, Volume 14 (1975), pp. 63-68 | DOI | MR | Zbl
[17] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
Cité par Sources :