Soit
Let
Keywords: Iwasawa theory, modular forms,
Mot clés : théorie d’Iwasawa, formes modulaires, fonctions
@article{AIF_2008__58_3_1023_0, author = {Delbourgo, Daniel and Ward, Tom}, title = {Non-abelian congruences between $L$-values of elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {1023--1055}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2377}, zbl = {1165.11077}, mrnumber = {2427518}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2377/} }
TY - JOUR AU - Delbourgo, Daniel AU - Ward, Tom TI - Non-abelian congruences between $L$-values of elliptic curves JO - Annales de l'Institut Fourier PY - 2008 SP - 1023 EP - 1055 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2377/ DO - 10.5802/aif.2377 LA - en ID - AIF_2008__58_3_1023_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Ward, Tom %T Non-abelian congruences between $L$-values of elliptic curves %J Annales de l'Institut Fourier %D 2008 %P 1023-1055 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2377/ %R 10.5802/aif.2377 %G en %F AIF_2008__58_3_1023_0
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 1023-1055. doi : 10.5802/aif.2377. https://www.numdam.org/articles/10.5802/aif.2377/
[1]
[2] Algebraicity of
[3] The
[4] Discriminant of Hecke fields and twisted adjoint
[5] Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | DOI | MR
[6] Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Volume 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | DOI | MR | Zbl
[7]
[8]
[9]
[10] Non-Archimedean
[11] Sur les représentations modulaires de degré
[12] Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Volume 48 (1981) no. 3, pp. 697 | DOI | Zbl
[13] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Volume 98 (1989) no. 1, pp. 75-106 | DOI | EuDML | MR | Zbl
[14] Number theoretic background, Automorphic forms, representations and
Cité par Sources :