Soit une courbe elliptique définie sur . Nous démontrons des versions faibles des congruences de Kato, pour les valeurs spéciales Plus précisément, nous vérifions que les congruences sont vraies modulo , plutôt que modulo . Bien que ça ne suffise pas pour établir l’existence d’une fonction -adique qui vit dans elles fournissent beaucoup d’indices de l’existence de cet objet analytique. Par exemple, si les congruences trouvées numériquement par Tim et Vladimir Dokchitser sont vraies.
Let be a semistable elliptic curve over . We prove weak forms of Kato’s -congruences for the special values More precisely, we show that they are true modulo , rather than modulo . Whilst not quite enough to establish that there is a non-abelian -function living in , they do provide strong evidence towards the existence of such an analytic object. For example, if these verify the numerical congruences found by Tim and Vladimir Dokchitser.
Keywords: Iwasawa theory, modular forms, $p$-adic $L$-functions
Mot clés : théorie d’Iwasawa, formes modulaires, fonctions $L$ $p$-adiques
@article{AIF_2008__58_3_1023_0, author = {Delbourgo, Daniel and Ward, Tom}, title = {Non-abelian congruences between $L$-values of elliptic curves}, journal = {Annales de l'Institut Fourier}, pages = {1023--1055}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {58}, number = {3}, year = {2008}, doi = {10.5802/aif.2377}, zbl = {1165.11077}, mrnumber = {2427518}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2377/} }
TY - JOUR AU - Delbourgo, Daniel AU - Ward, Tom TI - Non-abelian congruences between $L$-values of elliptic curves JO - Annales de l'Institut Fourier PY - 2008 SP - 1023 EP - 1055 VL - 58 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2377/ DO - 10.5802/aif.2377 LA - en ID - AIF_2008__58_3_1023_0 ER -
%0 Journal Article %A Delbourgo, Daniel %A Ward, Tom %T Non-abelian congruences between $L$-values of elliptic curves %J Annales de l'Institut Fourier %D 2008 %P 1023-1055 %V 58 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2377/ %R 10.5802/aif.2377 %G en %F AIF_2008__58_3_1023_0
Delbourgo, Daniel; Ward, Tom. Non-abelian congruences between $L$-values of elliptic curves. Annales de l'Institut Fourier, Tome 58 (2008) no. 3, pp. 1023-1055. doi : 10.5802/aif.2377. http://www.numdam.org/articles/10.5802/aif.2377/
[1] -functions of elliptic curves and false Tate curve extensions, University of Cambridge (2005) (Ph. D. Thesis)
[2] Algebraicity of -values for elliptic curves in a false Tate curve tower, Math. Proc. Cambridge Philos. Soc., Volume 142 (2007) no. 2, pp. 193-204 | DOI | MR
[3] The main conjecture for elliptic curves without complex multiplication, Publ. Math. Inst. Hautes Études Sci. (2005) no. 101, pp. 163-208 | Numdam | MR | Zbl
[4] Discriminant of Hecke fields and twisted adjoint -values for , Invent. Math., Volume 134 (1998) no. 3, pp. 547-577 | DOI | MR | Zbl
[5] Computations in non-commutative Iwasawa theory, Proc. Lond. Math. Soc. (3), Volume 94 (2007) no. 1, pp. 211-272 (With an appendix by J. Coates and R. Sujatha) | DOI | MR
[6] Root numbers of non-abelian twists of elliptic curves, Proc. London Math. Soc. (3), Volume 91 (2005) no. 2, pp. 300-324 (With an appendix by Tom Fisher) | DOI | MR | Zbl
[7] -adic interpolation of convolutions of Hilbert modular forms, Ann. Inst. Fourier (Grenoble), Volume 47 (1997) no. 2, pp. 365-428 | DOI | Numdam | MR | Zbl
[8] -adic -functions for modular forms, Compositio Math., Volume 62 (1987) no. 1, pp. 31-46 | Numdam | MR | Zbl
[9] of some non-commutative completed group rings, -Theory, Volume 34 (2005) no. 2, pp. 99-140 | DOI | MR | Zbl
[10] Non-Archimedean -functions of Siegel and Hilbert modular forms, Lecture Notes in Mathematics, 1471, Springer-Verlag, Berlin, 1991 | MR | Zbl
[11] Sur les représentations modulaires de degré de , Duke Math. J., Volume 54 (1987) no. 1, pp. 179-230 | DOI | MR | Zbl
[12] Corrections to: “The special values of the zeta functions associated with Hilbert modular forms” [Duke Math. J. 45 (1978), no. 3, 637–679, Duke Math. J., Volume 48 (1981) no. 3, pp. 697 | DOI | Zbl
[13] Stickelberger elements and modular parametrizations of elliptic curves, Invent. Math., Volume 98 (1989) no. 1, pp. 75-106 | DOI | EuDML | MR | Zbl
[14] Number theoretic background, Automorphic forms, representations and -functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2 (Proc. Sympos. Pure Math., XXXIII), Amer. Math. Soc., Providence, R.I., 1979, pp. 3-26 | MR | Zbl
Cité par Sources :