On the Product of Functions in BMO and H1
[Produits de fonctions de H1 et BMO]
Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1405-1439.

Le produit d’une fonction à oscillation moyenne bornée avec une fonction de l’espace de Hardy H1 n’est pas intégrable en général. Nous montrons toutefois qu’on peut lui donner un sens en tant que distribution tempérée, ceci grâce à la dualité H1, BMO. Cette distribution peut de plus s’écrire comme la somme d’une fonction intégrable et d’une distribution appartenant à un espace de Hardy-Orlicz adapté. Lorsqu’on considère un tel produit pour les fonctions holomorphes du disque unité, cet énoncé possède une réciproque : toute fonction holomorphe de l’espace de Hardy-Orlicz considéré peut s’écrire comme un tel produit.

The point-wise product of a function of bounded mean oscillation with a function of the Hardy space H1 is not locally integrable in general. However, in view of the duality between H1 and BMO, we are able to give a meaning to the product as a Schwartz distribution. Moreover, this distribution can be written as the sum of an integrable function and a distribution in some adapted Hardy-Orlicz space. When dealing with holomorphic functions in the unit disc, the converse is also valid: every holomorphic of the corresponding Hardy-Orlicz space can be written as a product of a function in the holomorphic Hardy space H1 and a holomorphic function with boundary values of bounded mean oscillation.

DOI : 10.5802/aif.2299
Classification : 42B25, 42B30, 30H
Keywords: Hardy spaces, bounded mean oscillation, Jacobian lemma, Jacobian equation, Hardy-Orlicz spaces, div-curl lemma, factorization in Hardy spaces, weak Jacobian.
Mot clés : Espaces de Hardy, fonctions à oscillation moyenne bornée, lemme du Jacobien, équation du Jacobien, espaces de hardy-Orlicz, lemme div-curl, factorisation dans les classes de hardy, Jacobien faible.
Bonami, Aline 1 ; Iwaniec, Tadeusz 2 ; Jones, Peter 3 ; Zinsmeister, Michel 4

1 Université d’Orléans MAPMO BP 6759 45067 Orléans cedex
2 Syracuse University 215 Carnegie Hall Syracuse NY 13244-1150 (USA)
3 Yale University Mathematics Dept. PO Box 208 283 New Haven CT 06520-8283 (USA)
4 Université d’Orléans MAPMO BP 6759 45067 Orléans cedex et Ecole Polytechnique PMC 91128 Palaiseau
@article{AIF_2007__57_5_1405_0,
     author = {Bonami, Aline and Iwaniec, Tadeusz and Jones, Peter and Zinsmeister, Michel},
     title = {On the {Product} of {Functions} in {\protect\emph{BMO}} and {\protect\emph{H}}$^\text{1}$},
     journal = {Annales de l'Institut Fourier},
     pages = {1405--1439},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {57},
     number = {5},
     year = {2007},
     doi = {10.5802/aif.2299},
     zbl = {1132.42010},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.2299/}
}
TY  - JOUR
AU  - Bonami, Aline
AU  - Iwaniec, Tadeusz
AU  - Jones, Peter
AU  - Zinsmeister, Michel
TI  - On the Product of Functions in BMO and H$^\text{1}$
JO  - Annales de l'Institut Fourier
PY  - 2007
SP  - 1405
EP  - 1439
VL  - 57
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.2299/
DO  - 10.5802/aif.2299
LA  - en
ID  - AIF_2007__57_5_1405_0
ER  - 
%0 Journal Article
%A Bonami, Aline
%A Iwaniec, Tadeusz
%A Jones, Peter
%A Zinsmeister, Michel
%T On the Product of Functions in BMO and H$^\text{1}$
%J Annales de l'Institut Fourier
%D 2007
%P 1405-1439
%V 57
%N 5
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.2299/
%R 10.5802/aif.2299
%G en
%F AIF_2007__57_5_1405_0
Bonami, Aline; Iwaniec, Tadeusz; Jones, Peter; Zinsmeister, Michel. On the Product of Functions in BMO and H$^\text{1}$. Annales de l'Institut Fourier, Tome 57 (2007) no. 5, pp. 1405-1439. doi : 10.5802/aif.2299. https://www.numdam.org/articles/10.5802/aif.2299/

[1] Astala, K.; Iwaniec, T.; Koskela, P.; Martin, G. Mappings of BMO-bounded distortion, Math. Ann., Volume 317 (2000), pp. 703-726 | DOI | MR | Zbl

[2] Astala, K.; Zinsmeister, M. Teichmüller spaces and BMOA, Math. Ann., Volume 289 (1991), pp. 613-625 | DOI | MR | Zbl

[3] Ball, J. M. Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal., Volume 63 (1977), pp. 703-726 | MR | Zbl

[4] Ball, J. M.; Murat, F. Remarks on Chacon’s Biting Lemma, Proc. Amer. Math. Soc., Volume 107 (1989), pp. 655-663 | Zbl

[5] Ball, J. M.; Zhang, K. Lower semicontinuity of multiple integrals and the biting lemma, Proc. Royal Soc. Edinburgh. Sec. A, Volume 114 (1990), pp. 367-379 | DOI | MR | Zbl

[6] Bonami, A.; Madan, S. Balayage of Carleson measures and Hankel operators on generalized Hardy spaces, Math. Nachr., Volume 193 (1991), pp. 237-245 | DOI | MR | Zbl

[7] Brooks, J. K.; Chacon, R.C. Continuity and compactness of measures, Advances Math., Volume 107 (1980), pp. 16-26 | DOI | MR | Zbl

[8] Chang, D.-C.; Dafni, G.; Sadosky, C. A Div-Curl lemma in BMO on a domain, Progr. Math., 238, Birkhäuser, Boston, 2005 | MR

[9] Chang, D. C.; Krantz, S. G.; Stein, E. M. Hp-theory on a smooth domain in n and elliptic boundary value problems, J. Funct. Anal., Volume 114 (1993), pp. 286-347 | DOI | MR | Zbl

[10] Coifman, R. R.; Lions, P. L.; Meyer, Y.; Semmes, S. Compensated compactness and Hardy spaces, J. Math. Pures Appl., Volume 72 (1993), pp. 247-286 | MR | Zbl

[11] Coifman, R. R.; Rochberg, R. Another characterization of BMO, Proc. Amer. Math. Soc., Volume 79 (1980), pp. 249-254 | DOI | MR | Zbl

[12] Coifman, R. R.; Rochberg, R.; Weiss, G. Factorization theorems for Hardy spaces in several variables, Ann. of Math., Volume 103 (1976), pp. 611-635 | DOI | MR | Zbl

[13] Coifman, R. R.; Weiss, G. Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., Volume 83 (1977), pp. 569-645 | DOI | MR | Zbl

[14] Dafni, G. Local VMO and weak convergence in H1, Canad. Math. Bull., Volume 45 (2002), pp. 46-59 | DOI | MR | Zbl

[15] Dafni, G. Nonhomogeneous Div-Curl lemmas and local Hardy spaces, Adv. Differential Equations, Volume 10 (2005), pp. 505-526 | MR | Zbl

[16] Evans, L. C. Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conference Series in Mathematics, 74, American Mathematical Society, Providence, 1990 | MR | Zbl

[17] Evans, L. C.; Müller, S. Hardy spaces and the two-dimensional Euler equations with nonnegative vorticity, Journ. Amer. Math. Soc., Volume 7 (1994), pp. 199-219 | DOI | MR | Zbl

[18] Fefferman, C. Characterization of bounded mean oscillations, Bull. Amer. Math. Soc., Volume 77 (1971), pp. 587-588 | DOI | MR | Zbl

[19] Fefferman, C.; Stein, E. M. Hp-spaces of several variables, Acta Math., Volume 129 (1972), pp. 137-193 | DOI | MR | Zbl

[20] Garnett, J. B. Bounded Analytic Functions, Pure and Applied Mathematics, 96, Academic Press, New York, 1981 | MR | Zbl

[21] Giannetti, F.; Iwaniec, T.; Onninen, J.; Verde, A. Estimates of Jacobians by subdeterminants, Journ. of Geometric Anal., Volume 12 (2002), pp. 223-254 | MR | Zbl

[22] Gotoh, Y. Remarks on multipliers for BMO on general domains, Kodai Math. J., Volume 16 (1993), pp. 79-89 | DOI | MR | Zbl

[23] Gotoh, Y. On multipliers for BMOφ on general domains, Ann. Acad. Sci. Fenn. Ser. A. I. Math., Volume 19 (1994), pp. 143-161 | MR | Zbl

[24] Greco, L.; Iwaniec, T.; Sbordone, C. Inverting the p-harmonic operator, Manuscripta Math., Volume 92 (1997), pp. 249-258 | DOI | MR | Zbl

[25] Hélein, F. Regularity of weakly harmonic maps from a surface into a manifold with symmetries, Manuscripta Math., Volume 70 (1991), pp. 203-218 | DOI | MR | Zbl

[26] Iwaniec, T.; Koskela, P.; Martin, G.; Sbordone, C. Mappings of finite distortion: LnlogαL - integrability, J. London Math. Soc., Volume 67 (2003), pp. 123-136 | DOI | MR | Zbl

[27] Iwaniec, T.; Martin, G. Geometric Function Theory and Nonlinear Analysis, Oxford University Press, New-York, 2001 | Zbl

[28] Iwaniec, T.; Onninen, J. H1- estimates of Jacobians by subdeterminants, Mathematische Annalen, Volume 324 (2002), pp. 341-358 | DOI | MR | Zbl

[29] Iwaniec, T.; Sbordone, C. On the integrability of the Jacobian under minimal hypothesis, Arch. Rational Mech. Anal., Volume 119 (1992), pp. 129-143 | DOI | MR | Zbl

[30] Iwaniec, T.; Sbordone, C. Weak minima of variational integrals, J. Reine Angew. Math., Volume 454 (1994), pp. 143-161 | DOI | MR | Zbl

[31] Iwaniec, T.; Sbordone, C. Quasiharmonic fields, Ann. I.H. Poincaré Anal. Non Lin., Volume 18 (2001), pp. 519-572 | DOI | Numdam | MR | Zbl

[32] Iwaniec, T.; Sbordone, C. New and old function spaces in the theory of PDEs and nonlinear analysis, Banach Center Publications, 64, Polish Acad. Sci., Warsaw, 2004 | MR | Zbl

[33] Iwaniec, T.; Verde, A. A study of Jacobians in Hardy-Orlicz Spaces, Proc. Royal Soc. Edinburgh, Volume 129A (1999), pp. 539-570 | DOI | MR | Zbl

[34] Janson, S. On functions with conditions on the mean oscillation, Ark. Math., Volume 14 (1976), pp. 189-196 | DOI | MR | Zbl

[35] Janson, S. Generalizations of Lipschitz spaces and an application to Hardy spaces and bounded mean oscillation, Duke Math. J., Volume 47 (1980), pp. 959-982 | DOI | MR | Zbl

[36] Janson, S.; Jones, P. W. Interpolation between Hp spaces; The complex method, Journ. of Funct. Anal., Volume 48 (1982), pp. 58-80 | DOI | MR | Zbl

[37] John, F.; Nirenberg, L. On functions of bounded mean oscillation, Comm. Pure Appl. Math., Volume 14 (1961), pp. 415-426 | DOI | MR | Zbl

[38] Jones, P. W. Carleson measures and the Fefferman-Stein decomposition of BMO(n), Ann. of Math., Volume 111 (1980), pp. 197-208 | DOI | MR | Zbl

[39] Jones, P. W. Extension theorems for BMO, Indiana Univ. Math. J., Volume 29 (1980), pp. 41-66 | DOI | MR | Zbl

[40] Jones, P. W. Interpolation between Hardy spaces, Wadsworth Math. Ser., I, II (Chicago, III, 1981), Wadsworth, Belmont, CA, 1983 | MR | Zbl

[41] Jones, P. W.; Journé, J. L. On weak convergence in H1(d), Proc. Amer. Math. Soc., Volume 120 (1994), pp. 137-138 | DOI | MR | Zbl

[42] Jonsson, A.; Sjögren, P.; Wallin, H. Hardy and Lipschitz spaces on subsets of n, Studia Math., Volume 80 (1984), pp. 141-166 | EuDML | MR | Zbl

[43] Lou, Z.; McIntosh, A. Hardy spaces of exact forms on Lipschitz domains in n, Indiana Univ. Math. J., Volume 53 (2004), pp. 583-611 | DOI | MR | Zbl

[44] Milman, M.; Schonbek, T. Second order estimates in interpolation theory and applications, Proc. Amer. Math. Soc., Volume 110 (1990), pp. 961-969 | DOI | MR | Zbl

[45] Miyachi, A. Hp spaces over open subsets of n, Studia Math., Volume 95 (1990), pp. 205-228 | EuDML | MR | Zbl

[46] Müller, S. A surprising higher integrability property of mappings with positive determinant, Bull. Amer. Math. Soc., Volume 21 (1989), pp. 245-248 | DOI | MR | Zbl

[47] Müller, S. Weak continuity of determinants and nonlinear elasticity, C.R. Acad. Sci. Paris Ser. I Math., Volume 311 (1990), pp. 13-17 | MR | Zbl

[48] Müller, S.; Qi, T.; Yan, B.S. On a new class of elastic deformations not allowing for cavitation, Ann. Inst. H. Poincaré, Anal. Non Lin., Volume 11 (1994), pp. 217-243 | EuDML | Numdam | MR | Zbl

[49] Murat, F. Compacité par compensation, Ann. Scuola Norm. Sup. Pisa Cl. Sci., Volume 5 (1978), pp. 489-507 | EuDML | Numdam | MR | Zbl

[50] Nakai, E. Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math., Volume 105 (1993), pp. 105-119 | EuDML | MR | Zbl

[51] Nakai, E.; Yabuta, K. Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan, Volume 37 (1985), pp. 207-218 | DOI | MR | Zbl

[52] Rao, M. M.; Ren, Z. D. Theory of Orlicz Spaces, Monogr. Textbooks Pure Appl. Math., 146, Dekker, New York, 1991 | MR | Zbl

[53] Sbordone, C. Grand Sobolev spaces and their applications to variational problems, Le Matematiche (Catania), Volume 51 (1996(1997)) no. 2, pp. 335-347 | MR | Zbl

[54] Stegenga, D. A. Bounded Toeplitz operators on H1 and applications of the duality between H1 and the functions of bounded mean oscillation, Amer. J. Math., Volume 98 (1976), pp. 573-589 | DOI | MR | Zbl

[55] Stein, E. M. Note on the class LlogL , Studia Math., Volume 32 (1969), pp. 305-310 | EuDML | MR | Zbl

[56] Stein, E. M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, 1993 | MR | Zbl

[57] Stromberg, J. O. Bounded mean oscillations with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., Volume 28 (1979), pp. 511-544 | DOI | MR | Zbl

[58] Sverak, V. Regularity properties of deformations with finite energy, Arch. Rational Mech. Anal., Volume 100 (1988), pp. 105-127 | DOI | MR | Zbl

[59] Tartar, L. Compensated compactness and applications to partial differential equations, Res. Notes in Math, 39, Pitman, Boston, 1979 | MR | Zbl

[60] Uchiyama, A. A constructive proof of the Fefferman-Stein decomposition of BMO(n), Acta. Math., Volume 148 (1982), pp. 215-241 | DOI | MR | Zbl

[61] Uchiyama, A. Hardy spaces on the Euclidean space, Springer Monographs in Mathematics, Springer-Verlag, Tokyo, 2001 | MR | Zbl

[62] Zhang, K. Biting theorems for Jacobians and their applications, Ann. I. H. P. Anal. Non Lin., Volume 7 (1990), pp. 345-365 | EuDML | Numdam | MR | Zbl

[63] Zinsmeister, M. Espaces de Hardy et domaines de Denjoy, Ark. Mat., Volume 27 (1989), pp. 363-378 | DOI | MR | Zbl

  • Jia, Hongchao; Chang, Der-Chen; Weisz, Ferenc; Yang, Dachun; Yuan, Wen Musielak–Orlicz–Lorentz Hardy Spaces: Maximal Function, Finite Atomic, and Littlewood–Paley Characterizations with Applications to Dual Spaces and Summability of Fourier Transforms, Acta Mathematica Sinica, English Series, Volume 41 (2025) no. 1, p. 1 | DOI:10.1007/s10114-025-3153-2
  • Guliyev, Vagif S. Characterizations of commutators of the maximal function in total Morrey spaces on stratified Lie groups, Analysis and Mathematical Physics, Volume 15 (2025) no. 2 | DOI:10.1007/s13324-025-01038-w
  • Türkay, Merve; Mursaleen, Mohammad Some estimates in Lp (Г) for maximal commutator and commutator of maximal function, Filomat, Volume 38 (2024) no. 1, p. 1 | DOI:10.2298/fil2401001t
  • Li, Yinqin; Sickel, Winfried; Yang, Dachun; Yuan, Wen Characterizations of pointwise multipliers of Besov spaces in endpoint cases with an application to the duality principle, Journal of Functional Analysis, Volume 286 (2024) no. 1, p. 110198 | DOI:10.1016/j.jfa.2023.110198
  • Li, Yinqin; Sickel, Winfried; Yang, Dachun; Yuan, Wen Wavelet and Fourier analytic characterizations of pointwise multipliers of Besov spaces Bp,ps(Rn) with 0 < p ≤ 1, Journal of Functional Analysis, Volume 287 (2024) no. 12, p. 110654 | DOI:10.1016/j.jfa.2024.110654
  • Bakas, Odysseas; Xu, Zhendong; Zhai, Yujia; Zhang, Hao Multiplication between elements in martingale Hardy spaces and their dual spaces, Journal of Functional Analysis, Volume 287 (2024) no. 2, p. 110467 | DOI:10.1016/j.jfa.2024.110467
  • Ağcayazi, Müjdat; Zhang, Pu Characterization of Lipschitz Functions on Ball Banach Function Spaces, Mediterranean Journal of Mathematics, Volume 21 (2024) no. 1 | DOI:10.1007/s00009-023-02568-y
  • Guliyev, V. S. Characterizations for the fractional maximal operator and its commutators on total Morrey spaces, Positivity, Volume 28 (2024) no. 4 | DOI:10.1007/s11117-024-01068-x
  • Liu, Jun; Yang, Dachun; Zhang, Mingdong Sharp bilinear decomposition for products of both anisotropic Hardy spaces and their dual spaces with its applications to endpoint boundedness of commutators, Science China Mathematics, Volume 67 (2024) no. 9, p. 2091 | DOI:10.1007/s11425-023-2153-y
  • Fang, Chenglong; Liu, Liguang Bilinear Decompositions for Products of Orlicz–Hardy and Orlicz–Campanato Spaces, The Journal of Geometric Analysis, Volume 34 (2024) no. 11 | DOI:10.1007/s12220-024-01777-5
  • He, Qianjun; Li, Xiang Necessary and sufficient conditions for boundedness of commutators of maximal function on the p-adic vector spaces, AIMS Mathematics, Volume 8 (2023) no. 6, p. 14064 | DOI:10.3934/math.2023719
  • Guerra, André; Koch, Lukas; Lindberg, Sauli Nonlinear open mapping principles, with applications to the Jacobian equation and other scale-invariant PDEs, Advances in Mathematics, Volume 415 (2023), p. 108869 | DOI:10.1016/j.aim.2023.108869
  • Bonami, Aline; Jiao, Yong; Xie, Guangheng; Yang, Dachun; Zhou, Dejian Products and commutators of martingales in H1 and BMO, Journal de Mathématiques Pures et Appliquées, Volume 180 (2023), p. 188 | DOI:10.1016/j.matpur.2023.10.001
  • Huy, Duong Quoc; Ky, Luong Dang Musielak–Orlicz Hardy space estimates for commutators of Calderón–Zygmund operators, Mathematische Nachrichten, Volume 296 (2023) no. 3, p. 1173 | DOI:10.1002/mana.202000525
  • Jia, Hongchao; Weisz, Ferenc; Yang, Dachun; Yuan, Wen; Zhang, Yangyang Atomic Characterization of Musielak–Orlicz–Lorentz Hardy Spaces and Its Applications to Real Interpolation and Boundedness of Calderón–Zygmund Operators, The Journal of Geometric Analysis, Volume 33 (2023) no. 6 | DOI:10.1007/s12220-023-01242-9
  • Bonami, Aline; Ky, Luong Dang; Liang, Yiyu; Yang, Dachun Several remarks on Musielak–Orlicz Hardy spaces, Bulletin des Sciences Mathématiques, Volume 181 (2022), p. 103206 | DOI:10.1016/j.bulsci.2022.103206
  • Zhang, Yangyang; Yang, Dachun; Yuan, Wen Real-variable characterizations of local Orlicz-slice Hardy spaces with application to bilinear decompositions, Communications in Contemporary Mathematics, Volume 24 (2022) no. 06 | DOI:10.1142/s0219199721500048
  • Liu, Liguang; Xiao, Jie Divergence curl with fractional order, Journal de Mathématiques Pures et Appliquées, Volume 165 (2022), p. 190 | DOI:10.1016/j.matpur.2022.07.008
  • Chen, Ting; Liu, Feng Endpoint Sobolev Regularity of the Fractional Maximal Commutators, Journal of Fourier Analysis and Applications, Volume 28 (2022) no. 5 | DOI:10.1007/s00041-022-09965-z
  • He, Qianjun; Li, Xiang; Rafeiro, Humberto Characterization of Lipschitz Spaces via Commutators of Maximal Function on the p‐Adic Vector Space, Journal of Mathematics, Volume 2022 (2022) no. 1 | DOI:10.1155/2022/7430272
  • TÜRKAY, Merve Esra Some New Estimates for Maximal Commutator and Commutator of Maximal Function in Lp,λ(Γ), Journal of New Theory (2022) no. 40, p. 74 | DOI:10.53570/jnt.1162966
  • Guliyev, Vagif S.; Samko, Stefan G. Commutators of fractional maximal operator in variable Lebesgue spaces over bounded quasi‐metric measure spaces, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 16, p. 9266 | DOI:10.1002/mma.8303
  • Guliyev, V. S. Some Characterizations of BMO Spaces via Commutators in Orlicz Spaces on Stratified Lie Groups, Results in Mathematics, Volume 77 (2022) no. 1 | DOI:10.1007/s00025-021-01578-0
  • Guerra, André; Koch, Lukas; Lindberg, Sauli Energy Minimisers with Prescribed Jacobian, Archive for Rational Mechanics and Analysis, Volume 242 (2021) no. 2, p. 1059 | DOI:10.1007/s00205-021-01699-4
  • Liu, Feng; Xi, Shuai Sobolev regularity for commutators of the fractional maximal functions, Banach Journal of Mathematical Analysis, Volume 15 (2021) no. 1 | DOI:10.1007/s43037-020-00095-6
  • Yang, Dachun; Yuan, Wen; Zhang, Yangyang Bilinear decomposition and divergence-curl estimates on products related to local Hardy spaces and their dual spaces, Journal of Functional Analysis, Volume 280 (2021) no. 2, p. 108796 | DOI:10.1016/j.jfa.2020.108796
  • Arias, Sergi; Rodríguez-López, Salvador Some endpoint estimates for bilinear Coifman-Meyer multipliers, Journal of Mathematical Analysis and Applications, Volume 498 (2021) no. 2, p. 124972 | DOI:10.1016/j.jmaa.2021.124972
  • Huy, Duong Quoc; Ky, Luong Dang Boundedness of fractional integral operators on Musielak–Orlicz Hardy spaces, Mathematische Nachrichten, Volume 294 (2021) no. 12, p. 2340 | DOI:10.1002/mana.201900392
  • Ding, Shusen; Shi, Guannan; Xing, Yuming Estimates for Lipschitz and BMO Norms of Operators on Differential Forms, Nonlinear Analysis, Differential Equations, and Applications, Volume 173 (2021), p. 81 | DOI:10.1007/978-3-030-72563-1_5
  • Liu, Feng; Wang, Guoru Regularity of Commutators of Maximal Operators with Lipschitz Symbols, Taiwanese Journal of Mathematics, Volume 25 (2021) no. 5 | DOI:10.11650/tjm/210301
  • Jiao, Yong; Weisz, Ferenc; Xie, Guangheng; Yang, Dachun Martingale Musielak–Orlicz–Lorentz Hardy Spaces with Applications to Dyadic Fourier Analysis, The Journal of Geometric Analysis, Volume 31 (2021) no. 11, p. 11002 | DOI:10.1007/s12220-021-00671-8
  • Fu, Xing; Yang, Dachun; Yang, Sibei Endpoint Boundedness of Linear Commutators on Local Hardy Spaces Over Metric Measure Spaces of Homogeneous Type, The Journal of Geometric Analysis, Volume 31 (2021) no. 4, p. 4092 | DOI:10.1007/s12220-020-00429-8
  • Bonami, Aline; Liu, Liguang; Yang, Dachun; Yuan, Wen Pointwise Multipliers of Zygmund Classes on"Equation missing", The Journal of Geometric Analysis, Volume 31 (2021) no. 9, p. 8879 | DOI:10.1007/s12220-020-00453-8
  • Li, Bo; Liao, Minfeng; Li, Baode Some Estimates for Maximal Bochner—Riesz Means on Musielak—Orlicz Hardy Spaces, Mathematical Notes, Volume 107 (2020) no. 3-4, p. 618 | DOI:10.1134/s0001434620030293
  • Liu, Feng; Xue, Qingying; Zhang, Pu Regularity and continuity of commutators of the Hardy–Littlewood maximal function, Mathematische Nachrichten, Volume 293 (2020) no. 3, p. 491 | DOI:10.1002/mana.201900013
  • LI, BO; SUN, RUIRUI; LIAO, MINFENG; LI, BAODE LITTLEWOOD–PALEY CHARACTERIZATIONS OF ANISOTROPIC WEAK MUSIELAK–ORLICZ HARDY SPACES, Nagoya Mathematical Journal, Volume 237 (2020), p. 39 | DOI:10.1017/nmj.2018.10
  • Zhang, Pu Characterization of boundedness of some commutators of maximal functions in terms of Lipschitz spaces, Analysis and Mathematical Physics, Volume 9 (2019) no. 3, p. 1411 | DOI:10.1007/s13324-018-0245-5
  • Yang, Sibei; Yang, Dachun Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type, Collectanea Mathematica, Volume 70 (2019) no. 2, p. 197 | DOI:10.1007/s13348-019-00237-6
  • Bonami, Aline; Cao, Jun; Ky, Luong Dang; Liu, Liguang; Yang, Dachun; Yuan, Wen Multiplication between Hardy spaces and their dual spaces, Journal de Mathématiques Pures et Appliquées, Volume 131 (2019), p. 130 | DOI:10.1016/j.matpur.2019.05.003
  • Zhang, Pu; Si, Zengyan; Wu, Jianglong Some notes on commutators of the fractional maximal function on variable Lebesgue spaces, Journal of Inequalities and Applications, Volume 2019 (2019) no. 1 | DOI:10.1186/s13660-019-1960-7
  • Burczak, J.; Seregin, G. LlogL-Integrability of the Velocity Gradient for Stokes System with Drifts in L∞(BMO−1), Journal of Mathematical Sciences, Volume 236 (2019) no. 4, p. 399 | DOI:10.1007/s10958-018-4120-6
  • Xie, Guangheng; Weisz, Ferenc; Yang, Dachun; Jiao, Yong New martingale inequalities and applications to Fourier analysis, Nonlinear Analysis, Volume 182 (2019), p. 143 | DOI:10.1016/j.na.2018.12.011
  • Zhang, Pu Commutators of Multi-sublinear Maximal Functions with Lipschitz Functions, Results in Mathematics, Volume 74 (2019) no. 1 | DOI:10.1007/s00025-019-0971-5
  • Cao, Jun; Ky, Luong Dang; Yang, Dachun Bilinear decompositions of products of local Hardy and Lipschitz or BMO spaces through wavelets, Communications in Contemporary Mathematics, Volume 20 (2018) no. 03, p. 1750025 | DOI:10.1142/s0219199717500250
  • Zhang, Pu; Wu, Jianglong; Sun, Jie Commutators of Some Maximal Functions with Lipschitz Function on Orlicz Spaces, Mediterranean Journal of Mathematics, Volume 15 (2018) no. 6 | DOI:10.1007/s00009-018-1263-0
  • Qi, Chunyan; Zhang, Hui; Li, Baode New real-variable characterizations of anisotropic weak Hardy spaces of Musielak-Orlicz type, Rocky Mountain Journal of Mathematics, Volume 48 (2018) no. 2 | DOI:10.1216/rmj-2018-48-2-607
  • Cao, Jun; Liu, Liguang; Yang, Dachun; Yuan, Wen Intrinsic Structures of Certain Musielak–Orlicz Hardy Spaces, The Journal of Geometric Analysis, Volume 28 (2018) no. 4, p. 2961 | DOI:10.1007/s12220-017-9943-8
  • Sawano, Yoshihiro Various Function Spaces, Theory of Besov Spaces, Volume 56 (2018), p. 709 | DOI:10.1007/978-981-13-0836-9_6
  • AǦCAYAZI, Müjdat; GOGATISHVILI, Amiran; MUSTAFAYEV, Rza Weak-type Estimates in Morrey Spaces for Maximal Commutator and Commutator of Maximal Function, Tokyo Journal of Mathematics, Volume 41 (2018) no. 1 | DOI:10.3836/tjm/1502179258
  • Bonami, Aline; Feuto, Justin; Grellier, Sandrine; Ky, Luong Dang Atomic decomposition and weak factorization in generalized Hardy spaces of closed forms, Bulletin des Sciences Mathématiques, Volume 141 (2017) no. 7, p. 676 | DOI:10.1016/j.bulsci.2017.07.004
  • Zhang, Pu Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function, Comptes Rendus. Mathématique, Volume 355 (2017) no. 3, p. 336 | DOI:10.1016/j.crma.2017.01.022
  • Zhang, Hui; Qi, Chunyan; Li, Baode Anisotropic weak Hardy spaces of Musielak-Orlicz type and their applications, Frontiers of Mathematics in China, Volume 12 (2017) no. 4, p. 993 | DOI:10.1007/s11464-016-0546-7
  • Ponce, Augusto C.; Wilmet, Nicolas Schrödinger operators involving singular potentials and measure data, Journal of Differential Equations, Volume 263 (2017) no. 6, p. 3581 | DOI:10.1016/j.jde.2017.04.039
  • Fu, Xing; Yang, Dachun; Liang, Yiyu Products of Functions in BMO(X) BMO ( X ) and Hat1(X) H at 1 ( X ) via Wavelets Over Spaces of Homogeneous Type, Journal of Fourier Analysis and Applications, Volume 23 (2017) no. 4, p. 919 | DOI:10.1007/s00041-016-9483-9
  • Fan, XingYa; He, JianXun; Li, BaoDe; Yang, DaChun Real-variable characterizations of anisotropic product Musielak-Orlicz Hardy spaces, Science China Mathematics, Volume 60 (2017) no. 11, p. 2093 | DOI:10.1007/s11425-016-9024-2
  • Fu, Xing; Yang, Dachun Products of Functions in Hρ1(X) H ρ 1 ( X ) and BMOρ(X) BMO ρ ( X ) over RD-Spaces and Applications to Schrödinger Operators, The Journal of Geometric Analysis, Volume 27 (2017) no. 4, p. 2938 | DOI:10.1007/s12220-017-9789-0
  • Li, Jinxia; Sun, Ruirui; Li, Baode Anisotropic interpolation theorems of Musielak-Orlicz type, Journal of Inequalities and Applications, Volume 2016 (2016) no. 1 | DOI:10.1186/s13660-016-1184-z
  • Liang, Yiyu; Yang, Dachun; Jiang, Renjin Weak Musielak–Orlicz Hardy spaces and applications, Mathematische Nachrichten, Volume 289 (2016) no. 5-6, p. 634 | DOI:10.1002/mana.201500152
  • Yang, Sibei Isomorphisms and several characterizations of Musielak-Orlicz-Hardy spaces associated with some Schrödinger operators, Czechoslovak Mathematical Journal, Volume 65 (2015) no. 3, p. 747 | DOI:10.1007/s10587-015-0206-1
  • Yang, Dachun; Yang, Dongyong Maximal function characterizations of Musielak-Orlicz-Hardy spaces associated with magnetic Schrödinger operators, Frontiers of Mathematics in China, Volume 10 (2015) no. 5, p. 1203 | DOI:10.1007/s11464-015-0432-8
  • Betancor, Jorge J.; Castro, Alejandro J.; Rodríguez-Mesa, Lourdes UMD-Valued Square Functions Associated with Bessel Operators in Hardy and BMO Spaces, Integral Equations and Operator Theory, Volume 81 (2015) no. 3, p. 319 | DOI:10.1007/s00020-014-2202-5
  • Ky, Luong Dang On the product of functions in BMO and H1 over spaces of homogeneous type, Journal of Mathematical Analysis and Applications, Volume 425 (2015) no. 2, p. 807 | DOI:10.1016/j.jmaa.2014.12.057
  • Hoepfner, G.; Hounie, J.; Picon, T. Div–curl type estimates for elliptic systems of complex vector fields, Journal of Mathematical Analysis and Applications, Volume 429 (2015) no. 2, p. 774 | DOI:10.1016/j.jmaa.2015.04.054
  • AGCAYAZI, Mujdat; GOGATISHVILI, Amiran; KOCA, Kerim; MUSTAFAYEV, Rza A note on maximal commutators and commutators of maximal functions, Journal of the Mathematical Society of Japan, Volume 67 (2015) no. 2 | DOI:10.2969/jmsj/06720581
  • Hou, Shao Xiong; Yang, Da Chun; Yang, Si Bei Musielak-Orlicz BMO-type spaces associated with generalized approximations to the identity, Acta Mathematica Sinica, English Series, Volume 30 (2014) no. 11, p. 1917 | DOI:10.1007/s10114-014-3181-9
  • Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Estimates for second-order Riesz transforms associated with magnetic Schrödinger operators on Musielak-Orlicz-Hardy spaces, Applicable Analysis, Volume 93 (2014) no. 11, p. 2519 | DOI:10.1080/00036811.2014.918607
  • Cao, Jun; Chang, Der-Chen; Yang, Dachun; Yang, Sibei Boundedness of second order Riesz transforms associated to Schrödinger operators on Musielak-Orlicz-Hardy spaces, Communications on Pure and Applied Analysis, Volume 13 (2014) no. 4, p. 1435 | DOI:10.3934/cpaa.2014.13.1435
  • Bonami, Aline; Ky, Luong Dang Factorization of some Hardy-type spaces of holomorphic functions, Comptes Rendus. Mathématique, Volume 352 (2014) no. 10, p. 817 | DOI:10.1016/j.crma.2014.09.004
  • Ky, Luong Dang New Hardy Spaces of Musielak–Orlicz Type and Boundedness of Sublinear Operators, Integral Equations and Operator Theory, Volume 78 (2014) no. 1, p. 115 | DOI:10.1007/s00020-013-2111-z
  • Yang, Dachun; Yang, Sibei Musielak–Orlicz–Hardy Spaces Associated with Operators and Their Applications, Journal of Geometric Analysis, Volume 24 (2014) no. 1, p. 495 | DOI:10.1007/s12220-012-9344-y
  • Ky, Luong Dang Bilinear decompositions for the product space, Mathematische Nachrichten, Volume 287 (2014) no. 11-12, p. 1288 | DOI:10.1002/mana.201200101
  • Yang, Dachun; Yuan, Wen; Zhuo, Ciqiang Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces, Revista Matemática Complutense, Volume 27 (2014) no. 1, p. 93 | DOI:10.1007/s13163-013-0120-8
  • Yang, Sibei SOME ESTIMATES FOR SCHRÖDINGER TYPE OPERATORS ON MUSIELAK-ORLICZ-HARDY SPACES, Taiwanese Journal of Mathematics, Volume 18 (2014) no. 4 | DOI:10.11650/tjm.18.2014.3897
  • Li, Baode; Yang, Dachun; Yuan, Wen Anisotropic Hardy Spaces of Musielak-Orlicz Type with Applications to Boundedness of Sublinear Operators, The Scientific World Journal, Volume 2014 (2014), p. 1 | DOI:10.1155/2014/306214
  • Liang, Yiyu; Yang, Dachun Intrinsic square function characterizations of Musielak-Orlicz Hardy spaces, Transactions of the American Mathematical Society, Volume 367 (2014) no. 5, p. 3225 | DOI:10.1090/s0002-9947-2014-06180-1
  • HOU, SHAOXIONG; YANG, DACHUN; YANG, SIBEI LUSIN AREA FUNCTION AND MOLECULAR CHARACTERIZATIONS OF MUSIELAK–ORLICZ HARDY SPACES AND THEIR APPLICATIONS, Communications in Contemporary Mathematics, Volume 15 (2013) no. 06, p. 1350029 | DOI:10.1142/s0219199713500296
  • Liang, Yiyu; Yang, Dachun Musielak–Orlicz Campanato spaces and applications, Journal of Mathematical Analysis and Applications, Volume 406 (2013) no. 1, p. 307 | DOI:10.1016/j.jmaa.2013.04.069
  • Bonami, Aline; Grellier, Sandrine; Ky, Luong Dang Paraproducts and products of functions in BMO(Rn) and H1(Rn) through wavelets, Journal de Mathématiques Pures et Appliquées, Volume 97 (2012) no. 3, p. 230 | DOI:10.1016/j.matpur.2011.06.002
  • Liang, Yiyu; Huang, Jizheng; Yang, Dachun New real-variable characterizations of Musielak–Orlicz Hardy spaces, Journal of Mathematical Analysis and Applications, Volume 395 (2012) no. 1, p. 413 | DOI:10.1016/j.jmaa.2012.05.049
  • Yang, DaChun; Yang, SiBei Local Hardy spaces of Musielak-Orlicz type and their applications, Science China Mathematics, Volume 55 (2012) no. 8, p. 1677 | DOI:10.1007/s11425-012-4377-z
  • Feuto, Justin Product of functions in BMO and H 1 in non-homogeneous spaces, Acta Mathematica Sinica, English Series, Volume 27 (2011) no. 8, p. 1535 | DOI:10.1007/s10114-011-9366-6
  • RUSS, EMMANUEL RACINES CARRÉES D'OPÉRATEURS ELLIPTIQUES ET ESPACES DE HARDY, Confluentes Mathematici, Volume 03 (2011) no. 01, p. 1 | DOI:10.1142/s1793744211000278
  • Bonami, Aline; Feuto, Justin Products of Functions in Hardy and Lipschitz or BMO Spaces, Recent Developments in Real and Harmonic Analysis (2010), p. 57 | DOI:10.1007/978-0-8176-4588-5_4
  • Li, Pengtao; Peng, Lizhong The decomposition of product space HL1×BMOL, Journal of Mathematical Analysis and Applications, Volume 349 (2009) no. 2, p. 484 | DOI:10.1016/j.jmaa.2008.05.024
  • Feuto, Justin Products of functions in BMO and H1 spaces on spaces of homogeneous type, Journal of Mathematical Analysis and Applications, Volume 359 (2009) no. 2, p. 610 | DOI:10.1016/j.jmaa.2009.06.022

Cité par 85 documents. Sources : Crossref