Dans cet article nous donnons un algorithme qui produit une base du n-ième groupe de cohomology de De Rham de l’hypersurface affine lisse compatible avec la structure de Hodge mixte, où est un polynôme en variables et satisfait une condition de régularité à l’infini (en particulier, il a des singularités isolées). Comme application nous montrons que la notion de cycle de Hodge dans une fibre régulière de est donnée par l’annulation des intégrales de certaines -formes polynomiales dans sur des -cycles topologiques dans les fibres de . Puisque l’homologie de degré d’une fibre régulière est engendrée par les cycles évanescents, cela conduit à étudier des intégrales abéliennes obtenues en intégrant sur ceux-ci. Notre résultat généralise et utilise les arguments de J. Steenbrink pour les polynômes quasi-homogènes.
In this article we give an algorithm which produces a basis of the -th de Rham cohomology of the affine smooth hypersurface compatible with the mixed Hodge structure, where is a polynomial in variables and satisfies a certain regularity condition at infinity (and hence has isolated singularities). As an application we show that the notion of a Hodge cycle in regular fibers of is given in terms of the vanishing of integrals of certain polynomial -forms in over topological -cycles on the fibers of . Since the -th homology of a regular fiber is generated by vanishing cycles, this leads us to study Abelian integrals over them. Our result generalizes and uses the arguments of J. Steenbrink for quasi-homogeneous polynomials.
Keywords: Mixed Hodge structures of affine varieties, Gauss-Manin connection
Mot clés : problème d’appartenance, idéaux de polynômes, courant résidu, représentation intégrale
@article{AIF_2007__57_3_775_0, author = {Movasati, Hossein}, title = {Mixed {Hodge} structure of affine hypersurfaces}, journal = {Annales de l'Institut Fourier}, pages = {775--801}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {57}, number = {3}, year = {2007}, doi = {10.5802/aif.2276}, zbl = {1123.14007}, mrnumber = {2336829}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2276/} }
TY - JOUR AU - Movasati, Hossein TI - Mixed Hodge structure of affine hypersurfaces JO - Annales de l'Institut Fourier PY - 2007 SP - 775 EP - 801 VL - 57 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2276/ DO - 10.5802/aif.2276 LA - en ID - AIF_2007__57_3_775_0 ER -
%0 Journal Article %A Movasati, Hossein %T Mixed Hodge structure of affine hypersurfaces %J Annales de l'Institut Fourier %D 2007 %P 775-801 %V 57 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2276/ %R 10.5802/aif.2276 %G en %F AIF_2007__57_3_775_0
Movasati, Hossein. Mixed Hodge structure of affine hypersurfaces. Annales de l'Institut Fourier, Tome 57 (2007) no. 3, pp. 775-801. doi : 10.5802/aif.2276. http://www.numdam.org/articles/10.5802/aif.2276/
[1] Singularities of differentiable maps. Vol. II, Monographs in Mathematics, 83, Birkhäuser Boston Inc., Boston, MA, 1988 (Monodromy and asymptotics of integrals, Translated from the Russian by Hugh Porteous, Translation revised by the authors and James Montaldi) | MR | Zbl
[2] La classe d’homologie fondamentale d’un espace analytique, Bull. Soc. Math. France, Volume 89 (1961), pp. 461-513 | Numdam | MR | Zbl
[3] Die Monodromie der isolierten Singularitäten von Hyperflächen, Manuscripta Math., Volume 2 (1970), pp. 103-161 | DOI | MR | Zbl
[4] Vanishing cycles in a pencil of hyperplane sections of a non-singular quasi-projective variety, Proc. London Math. Soc. (3), Volume 72 (1996) no. 3, pp. 515-544 | DOI | MR | Zbl
[5] Théorie de Hodge. II, Inst. Hautes Études Sci. Publ. Math. (1971) no. 40, pp. 5-57 | DOI | Numdam | MR | Zbl
[6] Hodge cycles, motives, and Shimura varieties, Lecture Notes in Mathematics, 900, Springer-Verlag, Berlin, 1982 | MR | Zbl
[7] On the monodromy of complex polynomials, Duke Math. J., Volume 108 (2001) no. 2, pp. 199-209 | DOI | MR | Zbl
[8] Weighted projective varieties, Group actions and vector fields (Vancouver, B.C., 1981) (Lecture Notes in Math.), Volume 956, Springer, Berlin, 1982, pp. 34-71 | MR | Zbl
[9] Théorie de Hodge des cycles évanescents, Ann. Sci. École Norm. Sup. (4), Volume 19 (1986) no. 1, pp. 107-184 | Numdam | MR | Zbl
[10] Petrov modules and zeros of Abelian integrals, Bull. Sci. Math., Volume 122 (1998) no. 8, pp. 571-584 | DOI | MR | Zbl
[11] The infinitesimal 16th Hilbert problem in the quadratic case, Invent. Math., Volume 143 (2001) no. 3, pp. 449-497 | DOI | MR | Zbl
[12] Algebraic cycles and Hodge theory, Lecture Notes in Mathematics, 1594, Springer-Verlag, Berlin, 1994 (Lectures given at the Second C.I.M.E. Session held in Torino, June 21–29, 1993, Edited by A. Albano and F. Bardelli) | MR
[13] Singular 2.0.4, A computer algebra system for polynomial computations, Centre for Computer Algebra, University of Kaiserslautern (2001) (http://www.singular.uni-kl.de/) | Zbl
[14] On the periods of certain rational integrals. I, II, Ann. of Math. (2) 90 (1969), 460-495; ibid. (2), Volume 90 (1969), pp. 496-541 | MR | Zbl
[15] On the de Rham cohomology of algebraic varieties, Inst. Hautes Études Sci. Publ. Math. (1966) no. 29, pp. 95-103 | DOI | Numdam | MR | Zbl
[16] Complex algebraic varieties: periods of integrals and Hodge structures [ MR1060327 (91k:14010)], Algebraic geometry, III (Encyclopaedia Math. Sci.), Volume 36, Springer, Berlin, 1998, p. 1-217, 263–270 | MR | Zbl
[17] Hypergeometric series and Hodge cycles of four dimensional cubic hypersurfaces (to appear in Int. Jou. Number Theory, Vol 2, No 3, 2006) | Zbl
[18] Calculation of mixed Hodge structures, Gauss-Manin connections and Picard-Fuchs equations (To appear in the proceeding of Sao Carlos Conference at CIRM, Brikhauser. Together with the Library foliation.lib written in Singular and available at http://www.impa.br/~hossein/) | Zbl
[19] Abelian integrals in holomorphic foliations, Rev. Mat. Iberoamericana, Volume 20 (2004) no. 1, pp. 183-204 | MR | Zbl
[20] Center conditions: rigidity of logarithmic differential equations, J. Differential Equations, Volume 197 (2004) no. 1, pp. 197-217 | DOI | MR | Zbl
[21] Relative cohomology with respect to a Lefschetz pencil, J. Reine Angew. Math. (2006) no. 594, pp. 175-199 | DOI | MR | Zbl
[22] Hodge structures over function fields (preprint 1997)
[23] Hypergeometric period for a tame polynomial, C. R. Acad. Sci. Paris Sér. I Math., Volume 328 (1999) no. 7, pp. 603-608 | DOI | MR | Zbl
[24] On the mixed Hodge structure on the cohomology of the Milnor fibre, Math. Ann., Volume 271 (1985) no. 4, pp. 641-665 | DOI | MR | Zbl
[25] Variation of Hodge structure: the singularities of the period mapping, Invent. Math., Volume 22 (1973), pp. 211-319 | DOI | MR | Zbl
[26] Good bases for tame polynomials, J. Symbolic Comput., Volume 39 (2005) no. 1, pp. 103-126 | DOI | MR | Zbl
[27] The Hodge conjecture for Fermat varieties, Math. Ann., Volume 245 (1979) no. 2, pp. 175-184 | DOI | MR | Zbl
[28] Mixed Hodge structure on the vanishing cohomology, Real and complex singularities (Proc. Ninth Nordic Summer School/NAVF Sympos. Math., Oslo, 1976), Sijthoff and Noordhoff, Alphen aan den Rijn, 1977, pp. 525-563 | MR | Zbl
[29] Intersection form for quasi-homogeneous singularities, Compositio Math., Volume 34 (1977) no. 2, pp. 211-223 | Numdam | MR | Zbl
[30] Variation of mixed Hodge structure. I, Invent. Math., Volume 80 (1985) no. 3, pp. 489-542 | DOI | MR | Zbl
[31] Effect of automorphisms on variation of Hodge structures, J. Math. Kyoto Univ., Volume 21 (1981) no. 4, pp. 645-672 | MR | Zbl
[32] Asymptotic Hodge structure on vanishing cohomology, Izv. Akad. Nauk SSSR Ser. Mat., Volume 45 (1981) no. 3, p. 540-591, 688 | MR | Zbl
[33] The Hodge conjecture for cubic fourfolds, Compositio Math., Volume 34 (1977) no. 2, pp. 199-209 | Numdam | MR | Zbl
Cité par Sources :