Soit une substitution en un alphabet de deux lettres. Si et commencent par et respectivement, alors possède deux points fixes débutants par et respectivement.
Nous caractériserons les substitutions avec deux points fixes co-finaux (c’est-à-dire, qui diffèrent que par leur préfixe). La démonstration est combinatoire, elle se base sur une étude de répétitions de mots dans les points fixes.
Let be a substitution over a 2-letter alphabet, say . If and begin with and respectively, has two fixed points beginning with and respectively.
We characterize substitutions with two cofinal fixed points (i.e., which differ only by prefixes). The proof is a combinatorial one, based on the study of repetitions of words in the fixed points.
Keywords: Cofinal sequences, substitution
Mot clés : Suites co-finales, substitution
@article{AIF_2006__56_7_2551_0, author = {TAN, Bo and WEN, Zhi-Xiong and WU, Jun and WEN, Zhi-Ying}, title = {Substitutions with {Cofinal} {Fixed} {Points}}, journal = {Annales de l'Institut Fourier}, pages = {2551--2563}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2249}, zbl = {1121.68092}, mrnumber = {2290790}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2249/} }
TY - JOUR AU - TAN, Bo AU - WEN, Zhi-Xiong AU - WU, Jun AU - WEN, Zhi-Ying TI - Substitutions with Cofinal Fixed Points JO - Annales de l'Institut Fourier PY - 2006 SP - 2551 EP - 2563 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2249/ DO - 10.5802/aif.2249 LA - en ID - AIF_2006__56_7_2551_0 ER -
%0 Journal Article %A TAN, Bo %A WEN, Zhi-Xiong %A WU, Jun %A WEN, Zhi-Ying %T Substitutions with Cofinal Fixed Points %J Annales de l'Institut Fourier %D 2006 %P 2551-2563 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2249/ %R 10.5802/aif.2249 %G en %F AIF_2006__56_7_2551_0
TAN, Bo; WEN, Zhi-Xiong; WU, Jun; WEN, Zhi-Ying. Substitutions with Cofinal Fixed Points. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2551-2563. doi : 10.5802/aif.2249. http://www.numdam.org/articles/10.5802/aif.2249/
[1] Automatic sequences: Theory and Applications, Cambridge University Press, Cambrige, 2002 | Zbl
[2] Représentation géométrique de suites de complexité , Bull. Soc. Math., Volume 119 (1991) no. 2, pp. 199-215 (France) | Numdam | MR | Zbl
[3] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 181-207 | MR | Zbl
[4] Decomposition theorem on invertible substitutions, Osaka J. Math., Volume 35 (1998) no. 4, pp. 821-834 | MR | Zbl
[5] Combinatorics on words, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[6] Algebraic combinatorics on words, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[7] Applied combinatorics on words, Cambridge University Press, Cambridge, 2005 | MR | Zbl
[8] Die Isomorphismengruppen der freien Gruppen, Math. Ann, Volume 91 (1924), pp. 169-209 (Available at http://mathlib.sub.uni-goettingen.de/JFM/digit.php?an=JFM+50.0078.04) | DOI | MR
[9] Substitutions in Dynamics, Arithmetics and Combinatorics, Lecture Notes in Mathematics, 1794, Springer, Berlin, 2002 | MR | Zbl
[10] An effective solution to the D0L periodicity problem in the binary case, EATCS Bull., Volume 36 (1988), pp. 137-151 | Zbl
[11] The structure of invertible substitutions on a three-letter alphabet, Adv. in Appl. Math., Volume 32 (2004) no. 4, pp. 736-753 | DOI | MR | Zbl
[12] Local isomorphism of the invertible substitutions, C. R. Acad. Sci. Paris Sér. I Math., Volume 318 (1994) no. 4, pp. 299-304 | MR | Zbl
[13] On invertible substitutions with two fixed points, C. R. Math. Acad. Sci. Paris, Volume 334 (2002) no. 9, pp. 727-731 | MR | Zbl
[14] Some remarks on invertible substitutions on three letter alphabet, Chinese Sci. Bull., Volume 44 (1999) no. 19, pp. 1755-1760 | DOI | MR | Zbl
Cité par Sources :