Dans cet article nous étudions des mots multidimensionnels engendrés par des points fixes de substitutions, et obtenus en projetant les points entiers sur la demi-droite brisée correspondante. Nous montrons que pour une grande classe de substitutions le mot correspondant est la restriction d’une fonction linéaire modulo et qu’il est possible de décider si le mot résultant remplit l’espace. La preuve utilise des réseaux et le système de numération abstrait associé à la substitution.
In this paper we study multi-dimensional words generated by fixed points of substitutions by projecting the integer points on the corresponding broken halfline. We show for a large class of substitutions that the resulting word is the restriction of a linear function modulo and that it can be decided whether the resulting word is space filling or not. The proof uses lattices and the abstract number system associated with the substitution.
Keywords: Substitutions, limit word, discretisation of the hyperplane, lattices, automata, abstract number systems
Mot clés : substitutions, mot limite, hyperplan discret, réseaux, automates, systèmes de numération abstraits
@article{AIF_2006__56_7_2345_0, author = {Fuchs, Clemens and Tijdeman, Robert}, title = {Substitutions, abstract number systems and the space filling property}, journal = {Annales de l'Institut Fourier}, pages = {2345--2389}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2243}, mrnumber = {2290784}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2243/} }
TY - JOUR AU - Fuchs, Clemens AU - Tijdeman, Robert TI - Substitutions, abstract number systems and the space filling property JO - Annales de l'Institut Fourier PY - 2006 SP - 2345 EP - 2389 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2243/ DO - 10.5802/aif.2243 LA - en ID - AIF_2006__56_7_2345_0 ER -
%0 Journal Article %A Fuchs, Clemens %A Tijdeman, Robert %T Substitutions, abstract number systems and the space filling property %J Annales de l'Institut Fourier %D 2006 %P 2345-2389 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2243/ %R 10.5802/aif.2243 %G en %F AIF_2006__56_7_2345_0
Fuchs, Clemens; Tijdeman, Robert. Substitutions, abstract number systems and the space filling property. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2345-2389. doi : 10.5802/aif.2243. http://www.numdam.org/articles/10.5802/aif.2243/
[1] Pisot numbers and greedy algorithm, Number theory (Eger, 1996), de Gruyter, Berlin, 1998, pp. 9-21 | MR | Zbl
[2] Self affine tiling and Pisot numeration system, Number theory and its applications (Kyoto, 1997) (Dev. Math.), Volume 2, Kluwer Acad. Publ., Dordrecht, 1999, pp. 7-17 | MR | Zbl
[3] Cubic Pisot units with finite beta expansions, Algebraic number theory and Diophantine analysis (Graz, 1998), de Gruyter, Berlin, 2000, pp. 11-26 | MR | Zbl
[4] A survey on topological properties of tiles related to number systems, Geom. Dedicata, Volume 109 (2004), pp. 89-105 | DOI | MR | Zbl
[5] Pisot substitutions and Rauzy fractals, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001) no. 2, pp. 181-207 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | MR | Zbl
[6] Représentation géométrique de suites de complexité , Bull. Soc. Math. France, Volume 119 (1991), pp. 199-215 | Numdam | MR | Zbl
[7] Directions in mathematical quasicrystals, CRM Monograph Series, 13, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[8] Nonnegative matrices and applications, Encyclopedia of Mathematics and its Applications, 64, Cambridge University Press, Cambridge, 1997 | MR | Zbl
[9] Abstract numeration systems and tilings, Mathematical foundations of computer science 2005 (Lecture Notes in Comput. Sci.), Volume 3618, Springer, Berlin, 2005, pp. 131-143 | MR | Zbl
[10] Tilings associated with beta-numeration and substitutions, Integers: Electronic Journal of Combinatorial Number Theory, Volume 5 (2005) no. 3, pp. A2 | MR | Zbl
[11] Lattices and multi-dimensional words, Theoret. Comput. Sci., Volume 319 (2004) no. 1-3, pp. 177-202 | DOI | MR | Zbl
[12] Suites doubles de basse complexité, J. Théor. Nombres Bordeaux, Volume 12 (2000) no. 1, pp. 179-208 | DOI | Numdam | MR | Zbl
[13] Tilings and rotations on the torus: a two-dimensional generalization of Sturmian sequences, Discrete Math., Volume 223 (2000) no. 1-3, pp. 27-53 | DOI | MR | Zbl
[14] Palindromes and two-dimensional Sturmian sequences, J. Autom. Lang. Comb., Volume 6 (2001) no. 2, pp. 121-138 | MR | Zbl
[15] Développements en base de Pisot et répartition modulo , C. R. Acad. Sci. Paris Sér. A-B, Volume 285 (1977) no. 6, p. A419-A421 | MR | Zbl
[16] Connectedness of geometric representation of substitutions of Pisot type, Bull. Belg. Math. Soc. Simon Stevin, Volume 10 (2003) no. 1, pp. 77-89 | MR | Zbl
[17] Automate des préfixes-suffixes associé à une substitution primitive, J. Théor. Nombres Bordeaux, Volume 13 (2001) no. 2, pp. 353-369 | DOI | Numdam | MR | Zbl
[18] Geometric representation of substitutions of Pisot type, Trans. Amer. Math. Soc., Volume 353 (2001) no. 12, p. 5121-5144 (electronic) | DOI | MR | Zbl
[19] Systemes de numeration et fonctions fractales relatifs aux substitutions, Theoret. Comput. Sci., Volume 65 (1989) no. 2, pp. 153-169 | DOI | MR | Zbl
[20] Tilings from some non-irreducible, Pisot substitutions, Discrete Math. Theor. Comput. Sci., Volume 7 (2005) no. 1, p. 81-121 (electronic) | MR | Zbl
[21] Atomic surfaces, tilings and coincidences II. Reducible case Ann. Inst. Fourier (Grenoble), to appear | Numdam
[22] Automata, languages, and machines. Vol. A, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York, 1974 (Pure and Applied Mathematics, Vol. 58) | MR | Zbl
[23] On the norm form inequality , Publ. Math. Debrecen, Volume 56 (2000) no. 3-4, pp. 337-374 (Dedicated to Professor Kálmán Győry on the occasion of his 60th birthday) | MR | Zbl
[24] Finite beta-expansions, Ergodic Theory Dynam. Systems, Volume 12 (1992) no. 4, pp. 713-723 | DOI | MR | Zbl
[25] Additive functions with respect to numeration systems on regular languages, Monatsh. Math., Volume 139 (2003) no. 3, pp. 205-219 | DOI | MR | Zbl
[26] Atomic surfaces, tilings and coincidence I. Irreducible case, Israel J. Math., Volume 153 (2006), pp. 129-156 | DOI | MR | Zbl
[27] Substitution Delone sets, Discrete Comput. Geom., Volume 29 (2003) no. 2, pp. 175-209 | MR | Zbl
[28] On the representation of real numbers using regular languages, Theory Comput. Syst., Volume 35 (2002) no. 1, pp. 13-38 | MR | Zbl
[29] Real numbers having ultimately periodic representations in abstract numeration systems, Inform. and Comput., Volume 192 (2004) no. 1, pp. 57-83 | DOI | MR | Zbl
[30] Numeration systems on a regular language, Theory Comput. Syst., Volume 34 (2001) no. 1, pp. 27-44 | DOI | MR | Zbl
[31] The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems, Volume 4 (1984) no. 2, pp. 283-300 | DOI | MR | Zbl
[32] Matrices of Perron numbers, J. Number Theory, Volume 40 (1992) no. 2, pp. 211-217 | DOI | MR | Zbl
[33] Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications, 90, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[34] Symbolic Dynamics, Amer. J. Math., Volume 60 (1938) no. 4, pp. 815-866 | DOI | MR | Zbl
[35] On the -expansions of real numbers, Acta Math. Acad. Sci. Hungar., Volume 11 (1960), pp. 401-416 | DOI | MR | Zbl
[36] Nombres algébriques et substitutions, Bull. Soc. Math. France, Volume 110 (1982) no. 2, pp. 147-178 | Numdam | MR | Zbl
[37] Representations for real numbers and their ergodic properties, Acta Math. Acad. Sci. Hungar, Volume 8 (1957), pp. 477-493 | DOI | MR | Zbl
[38] Abstract -expansions and ultimately periodic representations, J. Théor. Nombres Bordeaux, Volume 17 (2005) no. 1, pp. 283-299 | DOI | Numdam | MR | Zbl
[39] The Tribonacci substitution, Integers: Electronic Journal of Combinatorial Number Theory, Volume 5 (2005) no. 3, pp. A13 | MR | Zbl
[40] Algebraic numbers and Fourier analysis, D. C. Heath and Co., Boston, Mass., 1963 | MR | Zbl
[41] Higher dimensional extensions of substitutions and their dual maps, J. Anal. Math., Volume 83 (2001), pp. 183-206 | DOI | MR | Zbl
[42] On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc., Volume 12 (1980) no. 4, pp. 269-278 | DOI | MR | Zbl
[43] Linearformen mit algebraischen Koeffizienten. II, Math. Ann., Volume 191 (1971), pp. 1-20 | DOI | MR | Zbl
[44] Quasicrystals and geometry, Cambridge University Press, Cambridge, 1995 | MR | Zbl
[45] Pure discrete spectrum dynamical system and periodic tiling associated with a substitution, Ann. Inst. Fourier (Grenoble), Volume 54 (2004) no. 2, pp. 341-381 | DOI | Numdam | MR | Zbl
[46] Multi-dimensional versions of a theorem of Fine and Wilf and a formula of Sylvester, Proc. Amer. Math. Soc., Volume 131 (2003) no. 6, p. 1661-1671 (electronic) | DOI | MR | Zbl
[47] Pure discrete spectrum for one-dimensional substitution systems of Pisot type, Canad. Math. Bull., Volume 45 (2002) no. 4, pp. 697-710 (Dedicated to Robert V. Moody) | DOI | MR | Zbl
[48] Unimodular substitions and their associated tiles (J. Théor. Nombres Bordeaux, to appear) | Numdam | Zbl
[49] Rauzy substitutions and multi-dimensional Sturmian words, Theoret. Comput. Sci., Volume 346 (2005) no. 2-3, pp. 469-489 | DOI | MR | Zbl
Cité par Sources :