Pour
For each
Keywords: Numeration systems, Fibonacci numbers, Fine and Wilf theorem, episturmian words
Mot clés : systèmes de numération, nombres de Fibonacci, théorème de Fine et Wilf, suites episturmiennes
@article{AIF_2006__56_7_2271_0, author = {Edson, Marcia and Zamboni, Luca Q.}, title = {On the {Number} of {Partitions} of an {Integer} in the $m$-bonacci {Base}}, journal = {Annales de l'Institut Fourier}, pages = {2271--2283}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {7}, year = {2006}, doi = {10.5802/aif.2240}, zbl = {1147.11012}, mrnumber = {2290781}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2240/} }
TY - JOUR AU - Edson, Marcia AU - Zamboni, Luca Q. TI - On the Number of Partitions of an Integer in the $m$-bonacci Base JO - Annales de l'Institut Fourier PY - 2006 SP - 2271 EP - 2283 VL - 56 IS - 7 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2240/ DO - 10.5802/aif.2240 LA - en ID - AIF_2006__56_7_2271_0 ER -
%0 Journal Article %A Edson, Marcia %A Zamboni, Luca Q. %T On the Number of Partitions of an Integer in the $m$-bonacci Base %J Annales de l'Institut Fourier %D 2006 %P 2271-2283 %V 56 %N 7 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2240/ %R 10.5802/aif.2240 %G en %F AIF_2006__56_7_2271_0
Edson, Marcia; Zamboni, Luca Q. On the Number of Partitions of an Integer in the $m$-bonacci Base. Annales de l'Institut Fourier, Tome 56 (2006) no. 7, pp. 2271-2283. doi : 10.5802/aif.2240. https://www.numdam.org/articles/10.5802/aif.2240/
[1] An exercise on Fibonacci representations, A tribute to Aldo de Luca, RAIRO, Theor. Inform. Appl., Volume 35 (2002), pp. 491-498 | DOI | Numdam | MR | Zbl
[2] Autour du système de numération d’Ostrwoski, Bull. Belg. Math. Soc. Simon Stevin, Volume 8 (2001), pp. 209-239 Journées Montoises d’Informatique Théorique (Marne-la-Vallée, 2000) | MR | Zbl
[3] Fibonacci representations, Fibonacci Quarterly, Volume 6(4) (1968), pp. 193-220 | MR | Zbl
[4] Uniqueness theorem for periodic functions, Proc. Amer. Math. Soc., Volume 16 (1965), pp. 109-114 | DOI | MR | Zbl
[5] Characterizations of balanced words via orderings, Theoret. Comput. Sci., Volume 310 (2004), pp. 247-271 | DOI | MR | Zbl
[6] Episturmian words and morphisms (results and conjectures), Algebraic combinatorics and Computer Science, Springer Italia, Milan (2001), pp. 533-539 | MR | Zbl
[7] Episturmian words and Episturmian morphisms, Theoret. Comput. Sci., Volume 302 (2003), pp. 1-34 | MR | Zbl
[8] Episturmian words: shifts, morphisms and numeration systems, Internat. J. Found. Comput. Sci., Volume 15 (2004), pp. 329-348 | DOI | MR | Zbl
[9] Return words in Sturmian and Episturmian words, Theor. Inform. Appl., Volume 34 (2000), pp. 343-356 | DOI | Numdam | MR | Zbl
[10] Ambiguity in the
[11] Bemerkungen zur Theorie der Diophantischen Approximation I, Abh. Math. Sem. Hamburg, Volume 1 (1922), pp. 77-98 | DOI
[12] Fine and Wilf words for any periods, Indag. Math. (N.S.), Volume 14 (2003), pp. 135-147 | DOI | MR | Zbl
[13] Représentation des nombres naturels par une somme de nombres de Fibonacci ou de nombres de Lucas, Bull. Soc. Royale Sci. Liège, Volume 42 (1972), pp. 179-182 | MR | Zbl
Cité par Sources :