Nous étudions la contribution des états résonnants d’énergie nulle aux singularités de la résolvante près de zéro de l’opérateur de Schrödinger sur les variétés riemanniennes à bout conique. Sous une condition non-captive à haute énergie, nous obtenons le développement asymptotique du groupe de Schrödinger pour grand.
For Schrödinger operator on Riemannian manifolds with conical end, we study the contribution of zero energy resonant states to the singularity of the resolvent of near zero. Long-time expansion of the Schrödinger group is obtained under a non-trapping condition at high energies.
Mots clés : Resolvent expansion, zero energy resonance, Schrödinger operator with metric
@article{AIF_2006__56_6_1903_0, author = {Wang, Xue Ping}, title = {Asymptotic expansion in time of the {Schr\"odinger} group on conical manifolds}, journal = {Annales de l'Institut Fourier}, pages = {1903--1945}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {6}, year = {2006}, doi = {10.5802/aif.2230}, zbl = {1118.35022}, mrnumber = {2282678}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2230/} }
TY - JOUR AU - Wang, Xue Ping TI - Asymptotic expansion in time of the Schrödinger group on conical manifolds JO - Annales de l'Institut Fourier PY - 2006 SP - 1903 EP - 1945 VL - 56 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2230/ DO - 10.5802/aif.2230 LA - en ID - AIF_2006__56_6_1903_0 ER -
%0 Journal Article %A Wang, Xue Ping %T Asymptotic expansion in time of the Schrödinger group on conical manifolds %J Annales de l'Institut Fourier %D 2006 %P 1903-1945 %V 56 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2230/ %R 10.5802/aif.2230 %G en %F AIF_2006__56_6_1903_0
Wang, Xue Ping. Asymptotic expansion in time of the Schrödinger group on conical manifolds. Annales de l'Institut Fourier, Tome 56 (2006) no. 6, pp. 1903-1945. doi : 10.5802/aif.2230. http://www.numdam.org/articles/10.5802/aif.2230/
[1] Low-energy parameters in nonrelativistic scattering theory, Ann. Physics, Volume 148 (1983), pp. 308-326 | DOI | MR | Zbl
[2] There is no Efimov effect for four or more particles, Phys. Rev. D, Volume 7 (1973), pp. 2517-2519 | DOI | MR
[3] On Efimov’s effect: A new pathology of three-particle systems, Phys. Lett. B, Volume 35 (1971), p. 25-27; II. Phys. Lett. D, 5 (1972), 1992-2002 | DOI
[4] Spectral asymmetry and Riemannian geometry I, Math. Proc. Cambridge Phil. Soc., Volume 77 (1975), pp. 43-69 | DOI | MR | Zbl
[5] Threshold scattering in two dimensions, Ann. Inst. H. Poincaré, Sect. A, Volume 48 (1988), pp. 175-204 | EuDML | Numdam | MR | Zbl
[6] Opérateurs à indices, II, Séminaire d’analyse fonctionnelle, Publication des séminaires mathématiques, Univ. Rennes 1, 1973 | EuDML | MR
[7] An index theorem for first order regular singular operators, Amer. J. Math., Volume 110 (1988), pp. 659-714 | DOI | MR | Zbl
[8] Strichartz estimates for the wave and Schrödinger equations with the inverse-square potentials, J. Funct. Analysis, Volume 203 (2003), pp. 519-549 | DOI | MR | Zbl
[9] Uniform estimates of the resolvent of the Laplace-Beltrami operator on infinite volume Riemannian manifolds, II, Ann. Inst. H. Poincaré, Volume 3 (2002), pp. 673-691 | MR | Zbl
[10] Théorème de l’indice sur les variétés non-compactes, J. reine angew. Math., Volume 541 (2001), pp. 81-115 | DOI | MR | Zbl
[11] A topological criterion for the existence of half-bound states, J. London Math. Soc., Volume 65 (2002), pp. 757-768 | DOI | MR | Zbl
[12] Le saut en zéro de la fonction de décalage spectral, J. Funct. Anal., Volume 212 (2004), pp. 222-260 | DOI | MR | Zbl
[13] Zero energy asymptotics of the resolvent for a class of slowly decaying potential, Preprint, 2003
[14] Exponential bounds and absence of positive eigenvalues for -body Schrödinger operators, Comm. Math. Phys., Volume 87 (1982/83), pp. 429-447 | DOI | MR | Zbl
[15] Eigenvalues of Schrödinger operators with potential asymptotically homogeneous of degree , Preprint, October 2005
[16] The Schrödinger propagators for scattering metrics, Preprint, 2003
[17] Spectral properties of Schrödinger operators and time decay of wave functions, Duke Math. J., Volume 46 (1979), pp. 583-611 | DOI | MR | Zbl
[18] Multiple commutator estimates and resolvent smoothness in quantum scattering theory, Ann. Inst. H. Poincaré, Sect A, Volume 41 (1984), pp. 207-225 | Numdam | MR | Zbl
[19] A unified approach to resolvent expansions at thresholds, Reviews Math. Phys., Volume 13 (2001), pp. 717-754 | DOI | MR | Zbl
[20] Asymptotic Theory of Elliptic Boundary Value Problemes in Singularly Perturbed Domains, 1, Birkhäuser, Boston-Berlin, 2000 | Zbl
[21] The Atiyah-Patodi-Singer index theorem, A. K. Peters Classics, Massachusetts, 1993 | MR | Zbl
[22] Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., Volume 78 (1981), pp. 391-408 | DOI | MR | Zbl
[23] Relative zeta functions, relative determinants, and scattering theory, Comm. Math. Physics, Volume 192 (1998), pp. 309-347 | DOI | MR | Zbl
[24] Asymptotic expansions in time for solutions of Schrödinger type equations, J. Funct. Analysis, Volume 49 (1982), pp. 10-53 | DOI | MR | Zbl
[25] Low energy asymptotics for Schrödinger operators with slowly decreasing potentials, Comm. Math. Phys., Volume 161 (1994), pp. 63-76 | DOI | MR | Zbl
[26] Noncentral potentials: the generalized Levinson theorem and the structure of the spectrum, J. Math. Phys., Volume 18 (1977), pp. 1582-1588 | DOI | MR
[27] Scattering Theory of Waves and Particles, Springer-Verlag, Berlin, 1982 | MR | Zbl
[28] Asymptotics and Special Functions, A. K. Peters Classics, Massachusetts, 1997 | MR | Zbl
[29] Local decay of scattering solutions to Schrödinger’s equation, Comm. Math. Phys., Volume 61 (1978), pp. 149-168 | DOI | MR | Zbl
[30] Relative time-delay for perturbations of elliptic operators and semi-classical asymptotics, J. Funct. Analysis, Volume 126 (1994), pp. 36-82 | DOI | MR | Zbl
[31] On the short wave asymptotic behaviour of solutions of stationary problems and the asymptoic behaviou as of solutions of non-stationary problems, Russ. Math. Survey, Volume 30 (1975), pp. 1-58 | DOI | MR | Zbl
[32] Propagation of singularities in three-body scattering, Astérisque, Volume 262 (2000), pp. 6-151 | Numdam | MR | Zbl
[33] Semiclassical estimates in asymptotically Euclidean scattering, Comm. in Math. Phys., Volume 212 (2000), pp. 205-217 | DOI | MR | Zbl
[34] Time-decay of scattering solutions and classical trajectories, Ann. Inst. H. Poincaré, Sect A, Volume 47 (1987), pp. 25-37 | Numdam | MR | Zbl
[35] Time-decay of scattering solutions and resolvent estimates for semi-classical Schrödinger operators, J. Diff. Equations, Volume 71 (1988), pp. 348-395 | DOI | MR | Zbl
[36] Asymptotic behavior of the resolvent of -body Schrödinger operators near a threshold, Ann. Inst. H. Poincaré, Volume 4 (2003), pp. 553-600 | MR | Zbl
[37] On the existence of the -body Efimov effect, J. Funct. Analysis, Volume 209 (2004), pp. 137-161 | DOI | MR | Zbl
[38] Threshold energy resonance in geometric scattering, Proceedings of Symposium “Scattering and Spectral Theory”, August 2003, Recife, Brazil, Matemática Contemporânea, Volume 26 (2004), pp. 135-164 | MR | Zbl
[39] A Treatise on the Theory of Bessel Functions, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl
[40] The low-energy scattering for slowly decreasing potentials, Comm. Math. Phys., Volume 85 (1982), pp. 177-198 | DOI | MR | Zbl
Cité par Sources :