On donne un exemple d’une variété symplectique compacte de dimension qui n’admet aucune structure Kählerienne, mais qui satisfait la condition de Lefschetz Forte et dont l’algèbre de DeRham est formelle ; de plus, on montre que peut être dotée d’une structure de Calabi-Yau généralisée spéciale.
We give an example of a compact 6-dimensional non-Kähler symplectic manifold that satisfies the Hard Lefschetz Condition. Moreover, it is showed that is a special generalized Calabi-Yau manifold.
Keywords: Symplectic manifolds, Calabi-Yau manifolds
Mot clés : variété de Calabi-Yau, Calabi-Yau manifolds
@article{AIF_2006__56_5_1281_0, author = {de Bartolomeis, Paolo and Tomassini, Adriano}, title = {On {Solvable} {Generalized} {Calabi-Yau} {Manifolds}}, journal = {Annales de l'Institut Fourier}, pages = {1281--1296}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {5}, year = {2006}, doi = {10.5802/aif.2213}, zbl = {1127.53065}, mrnumber = {2273857}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2213/} }
TY - JOUR AU - de Bartolomeis, Paolo AU - Tomassini, Adriano TI - On Solvable Generalized Calabi-Yau Manifolds JO - Annales de l'Institut Fourier PY - 2006 SP - 1281 EP - 1296 VL - 56 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2213/ DO - 10.5802/aif.2213 LA - en ID - AIF_2006__56_5_1281_0 ER -
%0 Journal Article %A de Bartolomeis, Paolo %A Tomassini, Adriano %T On Solvable Generalized Calabi-Yau Manifolds %J Annales de l'Institut Fourier %D 2006 %P 1281-1296 %V 56 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2213/ %R 10.5802/aif.2213 %G en %F AIF_2006__56_5_1281_0
de Bartolomeis, Paolo; Tomassini, Adriano. On Solvable Generalized Calabi-Yau Manifolds. Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1281-1296. doi : 10.5802/aif.2213. http://www.numdam.org/articles/10.5802/aif.2213/
[1] Symplectic and Holomorphic Theory in Kähler Geometry (2004) (Technical report)
[2] On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds preprint (2005) | Zbl
[3] On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic., Volume 24 (2001), pp. 1287-1314 | DOI | MR | Zbl
[4] Kähler and symplectic structures on nilmanifolds, Topology, Volume 27 (1988), pp. 513-518 | DOI | MR | Zbl
[5] Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup., Volume 73 (1956), pp. 157-202 | EuDML | Numdam | MR | Zbl
[6] A Differential Complex for Poisson Manifolds, J. Diff. Geom., Volume 28 (1988), pp. 93-114 | MR | Zbl
[7] Real Homotopy Theory of Kähler Manifolds, Inventiones Math., Volume 29 (1975), pp. 245-274 | DOI | EuDML | MR | Zbl
[8] A note on compact solvmanifolds with Kähler structures, Osaka J. of Math., Volume 43 (2006) no. 3, pp. 131-135 | MR | Zbl
[9] Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici, Volume 70 (1995), pp. 1-9 | DOI | EuDML | MR | Zbl
[10] Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not., Volume 4 (1998), pp. 727-733 | DOI | MR | Zbl
[11] Complex parallelisable manifolds and their small deformations, J. of Diff. Geom., Volume 10 (1975), pp. 85-112 | MR | Zbl
[12] Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I., Volume 2 A (1983), pp. 203-210 | Zbl
[13] Hodge Structure on Symplectic Manifolds, Adv. in Math., Volume 120 (1996), pp. 143-154 | DOI | MR | Zbl
Cité par Sources :