On Solvable Generalized Calabi-Yau Manifolds
[Sur les variétés de Calabi-Yau généralisées résolubles]
Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1281-1296.

On donne un exemple d’une variété symplectique compacte (M,κ) de dimension 6  qui n’admet aucune structure Kählerienne, mais qui satisfait la condition de Lefschetz Forte et dont l’algèbre de DeRham est formelle ; de plus, on montre que (M,κ)  peut être dotée d’une structure de Calabi-Yau généralisée spéciale.

We give an example of a compact 6-dimensional non-Kähler symplectic manifold (M,κ) that satisfies the Hard Lefschetz Condition. Moreover, it is showed that (M,κ) is a special generalized Calabi-Yau manifold.

DOI : 10.5802/aif.2213
Classification : 17B30, 53C15, 53D05
Keywords: Symplectic manifolds, Calabi-Yau manifolds
Mot clés : variété de Calabi-Yau, Calabi-Yau manifolds
de Bartolomeis, Paolo 1 ; Tomassini, Adriano 2

1 Università di Firenze Dipartimento di Matematica Applicata G. Sansone Via S. Marta 3 50139 Firenze (Italy)
2 Università di Parma Dipartimento di Matematica Viale G.P. Usberti 53/A 43100 Parma (Italy)
@article{AIF_2006__56_5_1281_0,
     author = {de Bartolomeis, Paolo and Tomassini, Adriano},
     title = {On {Solvable} {Generalized} {Calabi-Yau} {Manifolds}},
     journal = {Annales de l'Institut Fourier},
     pages = {1281--1296},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {56},
     number = {5},
     year = {2006},
     doi = {10.5802/aif.2213},
     zbl = {1127.53065},
     mrnumber = {2273857},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2213/}
}
TY  - JOUR
AU  - de Bartolomeis, Paolo
AU  - Tomassini, Adriano
TI  - On Solvable Generalized Calabi-Yau Manifolds
JO  - Annales de l'Institut Fourier
PY  - 2006
SP  - 1281
EP  - 1296
VL  - 56
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2213/
DO  - 10.5802/aif.2213
LA  - en
ID  - AIF_2006__56_5_1281_0
ER  - 
%0 Journal Article
%A de Bartolomeis, Paolo
%A Tomassini, Adriano
%T On Solvable Generalized Calabi-Yau Manifolds
%J Annales de l'Institut Fourier
%D 2006
%P 1281-1296
%V 56
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2213/
%R 10.5802/aif.2213
%G en
%F AIF_2006__56_5_1281_0
de Bartolomeis, Paolo; Tomassini, Adriano. On Solvable Generalized Calabi-Yau Manifolds. Annales de l'Institut Fourier, Tome 56 (2006) no. 5, pp. 1281-1296. doi : 10.5802/aif.2213. http://www.numdam.org/articles/10.5802/aif.2213/

[1] de Bartolomeis, P. Symplectic and Holomorphic Theory in Kähler Geometry (2004) (Technical report)

[2] de Bartolomeis, P.; Tomassini, A. On the Maslov Index of Lagrangian Submanifolds of Generalized Calabi-Yau Manifolds preprint (2005) | Zbl

[3] de Bartolomeis, P.; Tomassini, A. On Formality of Some Symplectic Manifolds, Inter. Math. Res. Notic., Volume 24 (2001), pp. 1287-1314 | DOI | MR | Zbl

[4] Benson, C.; Gordon, C. S. Kähler and symplectic structures on nilmanifolds, Topology, Volume 27 (1988), pp. 513-518 | DOI | MR | Zbl

[5] Blanchard, A. Sur le variétés analitiques complexes, Ann. Sci. Ecole Norm. Sup., Volume 73 (1956), pp. 157-202 | EuDML | Numdam | MR | Zbl

[6] Brylinski, J. L. A Differential Complex for Poisson Manifolds, J. Diff. Geom., Volume 28 (1988), pp. 93-114 | MR | Zbl

[7] Deligne, P.; Griffiths, P.; Morgan, J.; Sullivan, D. Real Homotopy Theory of Kähler Manifolds, Inventiones Math., Volume 29 (1975), pp. 245-274 | DOI | EuDML | MR | Zbl

[8] Hasegawa, K. A note on compact solvmanifolds with Kähler structures, Osaka J. of Math., Volume 43 (2006) no. 3, pp. 131-135 | MR | Zbl

[9] Mathieu, O. Harmonic cohomology classes of symplectic manifolds, Comm. Math. Helvetici, Volume 70 (1995), pp. 1-9 | DOI | EuDML | MR | Zbl

[10] Merkulov, S. A. Formality of Canonical Symplectic Complexes and Frobenius Manifolds, Int. Math. Res. Not., Volume 4 (1998), pp. 727-733 | DOI | MR | Zbl

[11] Nakamura, I. Complex parallelisable manifolds and their small deformations, J. of Diff. Geom., Volume 10 (1975), pp. 85-112 | MR | Zbl

[12] Silva, A. Spazi omogenei Kähleriani di gruppi di Lie complessi risolubili, Boll. U.M.I., Volume 2 A (1983), pp. 203-210 | Zbl

[13] Yan, D. Hodge Structure on Symplectic Manifolds, Adv. in Math., Volume 120 (1996), pp. 143-154 | DOI | MR | Zbl

Cité par Sources :