Cet article confirme une conséquence de la conjecture principale de la théorie d’Iwasawa non abélienne. On démontre que, sous une condition technique, les groupes de cohomologie étale , où est un schéma projectif lisse, sont engendrés par des unités tordues compatible par rapport aux normes dans une tour de corps de nombres associés à . On établit un résultat similaire pour la cohomologie motivique à coefficients finis en utilisant la conjecture de Bloch-Kato.
This article confirms a consequence of the non-abelian Iwasawa main conjecture. It is proved that under a technical condition the étale cohomology groups , where is a smooth, projective scheme, are generated by twists of norm compatible units in a tower of number fields associated to . Using the “Bloch-Kato-conjecture” a similar result is proven for motivic cohomology with finite coefficients.
Keywords: Étale cohomology, motivic cohomology, non-commutative Iwasawa-theory
Mot clés : cohomologie étale, cohomologie motivique, théorie d’Iwasawa non-commutative
@article{AIF_2006__56_4_1257_0, author = {Hornbostel, Jens and Kings, Guido}, title = {On non-commutative twisting in \'etale and motivic cohomology}, journal = {Annales de l'Institut Fourier}, pages = {1257--1279}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {4}, year = {2006}, doi = {10.5802/aif.2212}, mrnumber = {2266890}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2212/} }
TY - JOUR AU - Hornbostel, Jens AU - Kings, Guido TI - On non-commutative twisting in étale and motivic cohomology JO - Annales de l'Institut Fourier PY - 2006 SP - 1257 EP - 1279 VL - 56 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2212/ DO - 10.5802/aif.2212 LA - en ID - AIF_2006__56_4_1257_0 ER -
%0 Journal Article %A Hornbostel, Jens %A Kings, Guido %T On non-commutative twisting in étale and motivic cohomology %J Annales de l'Institut Fourier %D 2006 %P 1257-1279 %V 56 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2212/ %R 10.5802/aif.2212 %G en %F AIF_2006__56_4_1257_0
Hornbostel, Jens; Kings, Guido. On non-commutative twisting in étale and motivic cohomology. Annales de l'Institut Fourier, Tome 56 (2006) no. 4, pp. 1257-1279. doi : 10.5802/aif.2212. http://www.numdam.org/articles/10.5802/aif.2212/
[1] Théorie des topos et cohomologie étale des schémas, t.3, Lect. Notes. Math., Volume 305, Springer, 1973 | MR
[2] -functions and Tamagawa numbers of motives, “The Grothendieck Festschrift”, Vol.I, Progress in Math., Volume 86, Birkhäuser, Boston, 1990, pp. 333-400 | MR | Zbl
[3] Fine Selmer groups of elliptic curves over -adic Lie extensions, Math. Annalen, Volume 331 (2005), pp. 809-839 | DOI | MR | Zbl
[4] Algebraic and étale -theory, Trans. Amer. Math. Soc., Volume 292 (1985), pp. 247-280 | MR | Zbl
[5] Cohomologie galoisienne et valeurs des fontions , Proceedings of Symposia in Pure Mathematics, part I, Volume 55 (1994), pp. 599-706 | MR | Zbl
[6] Motivic Cohomology over Dedekind rings, Math. Z., Volume 248 (2004), pp. 773-794 | DOI | MR | Zbl
[7] The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky, J. reine angew. Math., Volume 530 (2001), pp. 55-103 | DOI | MR | Zbl
[8] Riemann-Roch theorems for higher algebraic -theory, Adv. in Math., Volume 40 (1981), pp. 203-289 | DOI | MR | Zbl
[9] Degeneration of -adic Eisenstein classes and of the elliptic polylog, Invent. Math., Volume 135 (1999), pp. 545-594 | DOI | MR | Zbl
[10] Equivariant Bloch-Kato conjecture and non-abelian Iwasawa main conjecture, Proceedings ICM, Volume II (2002), pp. 149-162 | MR | Zbl
[11] Classical motivic polylogarithm according to Beilinson and Deligne, Doc. Math., Volume 3 (1998), pp. 27-133 | MR | Zbl
[12] On the -adic cohomology of varieties over number fields and its Galois cohomology, Galois groups over , MSRI Publication, 1989 | Zbl
[13] -theory of semi-local rings with finite coefficients and étale cohomology, K-Theory, Volume 25 (2002), pp. 99-138 | DOI | MR | Zbl
[14] Iwasawa theory and -adic Hodge theory, Kodai Math. J., Volume 16 (1993), pp. 1-31 | DOI | MR | Zbl
[15] -adic Hodge theory and values of zeta functions of modular forms. Cohomologies -adiques et applications arithmétiques III, Astérisque, Volume 295, Soc. Math. Fr., 2004, pp. 117-290 | Numdam | MR | Zbl
[16] The Tamagawa number conjecture for CM elliptic curves, Invent. Math., Volume 143 (2001), pp. 571-627 | DOI | MR | Zbl
[17] Groupes analytiques -adiques, Pub. Math. IHÉS, Volume 26 (1965), pp. 389-603 | Numdam | MR | Zbl
[18] -theory and motivic cohomology of schemes (http://www.math.uiuc.edu/K-theory/336)
[19] A cup product in the Galois cohomology of number fields, Duke Math. J., Volume 120 (2004), pp. 269-310 | MR | Zbl
[20] Étale Cohomology, Princeton University Press, 1980 | MR | Zbl
[21] -homotopy theory of schemes, Pub. Math. IHÉS, Volume 90 (1999), pp. 45-143 | Numdam | MR | Zbl
[22] Cohomology of Number Fields, Grundlehren der math. Wiss., Volume 323, Springer, 2000 | MR | Zbl
[23] -adic -functions and -adic representations, SMF/AMS Texts and Monographs, Volume 3, American Mathematical Society, Providence, RI; Société Mathématique de France, Paris, 2000 | MR | Zbl
[24] Finite generation of the groups of algebraic integers, LNM, 341, Springer, 1973 | MR | Zbl
[25] Cohomologie galoisienne, Lecture Notes in Math., 5 e éd., Springer, 1994 | MR | Zbl
[26] -théorie des anneaux d’entiers de corps de nombres et cohomologie étale, Invent. Math., Volume 55 (1979), pp. 251-295 | DOI | MR | Zbl
[27] Operations on étale -theory. Applications, Lecture Notes in Math., Volume 966, Springer, 1982, pp. 271-303 | MR | Zbl
[28] Opérations en K-théorie algébrique, Canad. J.Math., Volume 37 (1985), pp. 488-550 | DOI | MR | Zbl
[29] -adic -theory of elliptic curves, Duke, Volume 54 (1987), pp. 249-269 | DOI | MR | Zbl
[30] Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, Volume 143, Princeton University Press, 2000 | MR | Zbl
[31] Relative cycles and Chow sheaves, Cycles, Transfers and Motivic Homology Theories, Annals of Math. Studies, Volume 143, Princeton University Press, 2000 | MR | Zbl
[32] Algebraic K-theory and étale cohomology, Ann. Sci. École Norm. Sup., Volume 13 (1985), pp. 437-552 | Numdam | MR | Zbl
[33] Bott stability in Algebraic -theory, in “Applications of Algebraic -theory”, Contemp. Math., Volume 55 (1986), pp. 389-406 | MR | Zbl
[34] Motivic cohomology with -coefficients (http://www.math.uiuc.edu/K-theory/639) | Numdam | Zbl
[35] Motivic cohomology groups are isomorphic to higher Chow groups in any characteristic, Int. Math. Res. Not. (2002), pp. 351-355 | DOI | MR | Zbl
[36] An introduction to homological algebra, Cambridge Studies in Advanced Mathematics, Volume 38, Cambridge, 1994 | MR | Zbl
Cité par Sources :