Soit une courbe elliptique modulaire définie sur un champ de nombres totalement réel et soit la forme propre associée. Ce papier présente un nouvelle méthode, inspirée par un récent travail de Bertolini et Darmon, pour contrôler le rang de sur des extensions convenables quadratiques imaginaires . En particulier, ce résultat peut être appliqué aux cas qui ne sont pas considérés dans le travail de Kolyvagin et Logachëv, i.e., quand est pair et n’est pas nouveau en aucun idéal premier.
Let be a modular elliptic curve defined over a totally real number field and let be its associated eigenform. This paper presents a new method, inspired by a recent work of Bertolini and Darmon, to control the rank of over suitable quadratic imaginary extensions . In particular, this argument can also be applied to the cases not covered by the work of Kolyvagin and Logachëv, that is, when is even and not new at any prime.
Keywords: Elliptic Curves, Birch and Swinnerton-Dyer Conjecture, Shimura Varieties, Congruences between Hilbert Modular Forms
Mot clés : courbes elliptiques, conjecture de Birch et Swinnerton-Dyer, variétés de Shimura, congruences entre formes modulaires de Hilbert
@article{AIF_2006__56_3_689_0, author = {Longo, Matteo}, title = {On the {Birch} and {Swinnerton-Dyer} conjecture for modular elliptic curves over totally real fields}, journal = {Annales de l'Institut Fourier}, pages = {689--733}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {56}, number = {3}, year = {2006}, doi = {10.5802/aif.2197}, zbl = {1152.11028}, mrnumber = {2244227}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2197/} }
TY - JOUR AU - Longo, Matteo TI - On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields JO - Annales de l'Institut Fourier PY - 2006 SP - 689 EP - 733 VL - 56 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2197/ DO - 10.5802/aif.2197 LA - en ID - AIF_2006__56_3_689_0 ER -
%0 Journal Article %A Longo, Matteo %T On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields %J Annales de l'Institut Fourier %D 2006 %P 689-733 %V 56 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2197/ %R 10.5802/aif.2197 %G en %F AIF_2006__56_3_689_0
Longo, Matteo. On the Birch and Swinnerton-Dyer conjecture for modular elliptic curves over totally real fields. Annales de l'Institut Fourier, Tome 56 (2006) no. 3, pp. 689-733. doi : 10.5802/aif.2197. http://www.numdam.org/articles/10.5802/aif.2197/
[1] Heegner points on Mumford-Tate curves, Invent. Math., Volume 126 (1996) no. 3, pp. 413-456 | DOI | MR | Zbl
[2] A rigid analytic Gross-Zagier formula and arithmetic applications, Ann. of Math. (2), Volume 146 (1997) no. 1, pp. 111-147 (With an appendix by Bas Edixhoven) | DOI | MR | Zbl
[3] -adic periods, -adic -functions, and the -adic uniformization of Shimura curves, Duke Math. J., Volume 98 (1999) no. 2, pp. 305-334 | DOI | MR | Zbl
[4] Iwasawa’s main conjecture for elliptic curves over anticyclotomic -extensions, Ann. of Math. (2), Volume 162 (2005) no. 1, pp. 1-64 | DOI | MR | Zbl
[5] -functions and Tamagawa numbers of motives, The Grothendieck Festschrift, Vol. I (Progr. Math.), Volume 86, Birkhäuser Boston, Boston, MA, 1990, pp. 333-400 | MR | Zbl
[6] Quotients of group rings arising from two-dimensional representations, C. R. Acad. Sci. Paris Sér. I Math., Volume 312 (1991) no. 4, pp. 323-328 | MR | Zbl
[7] Uniformisation -adique des courbes de Shimura: les théorèmes de Čerednik et de Drinfeld, Astérisque (1991) no. 196-197, pp. 7, 45-158 Courbes modulaires et courbes de Shimura (Orsay, 1987/1988) | MR | Zbl
[8] On the modularity of elliptic curves over : wild 3-adic exercises, J. Amer. Math. Soc., Volume 14 (2001) no. 4, pp. 843-939 | DOI | MR | Zbl
[9] Eisenstein series on the metaplectic group and nonvanishing theorems for automorphic -functions and their derivatives, Ann. of Math. (2), Volume 131 (1990) no. 1, pp. 53-127 | DOI | MR | Zbl
[10] Sur la mauvaise réduction des courbes de Shimura, Compositio Math., Volume 59 (1986) no. 2, pp. 151-230 | Numdam | MR | Zbl
[11] Sur les représentations galoisiennes modulo attachées aux formes modulaires, Duke Math. J., Volume 59 (1989) no. 3, pp. 785-801 | DOI | MR | Zbl
[12] Uniformization of algebraic curves by discrete arithmetic subgroups of with compact quotient spaces, Mat. Sb. (N.S.), Volume 100(142) (1976) no. 1, p. 59-88, 165 | MR
[13] Kummer theory for abelian varieties over local fields, Invent. Math., Volume 124 (1996) no. 1-3, pp. 129-174 | DOI | MR | Zbl
[14] Modularity of certain potentially Barsotti-Tate Galois representations, J. Amer. Math. Soc., Volume 12 (1999) no. 2, pp. 521-567 | DOI | MR | Zbl
[15] Fermat’s last theorem, Current developments in mathematics, 1995 (Cambridge, MA), Internat. Press, Cambridge, MA, 1994, pp. 1-154 | Zbl
[16] Periods of Hilbert modular forms and rational points on elliptic curves, Int. Math. Res. Not. (2003) no. 40, pp. 2153-2180 | DOI | MR | Zbl
[17] On deformation rings and Hecke rings, Ann. of Math. (2), Volume 144 (1996) no. 1, pp. 137-166 | DOI | MR | Zbl
[18] Nonoptimal levels of mod modular representations, Invent. Math., Volume 115 (1994) no. 3, pp. 435-462 | DOI | MR | Zbl
[19] Coverings of -adic symmetric domains, Funkcional. Anal. i Priložen., Volume 10 (1976) no. 2, pp. 29-40 | MR | Zbl
[20] The basis problem for modular forms and the traces of the Hecke operators, Modular functions of one variable, I (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972) (Lecture Notes in Math.), Volume 320, Springer, Berlin, 1973, pp. 75-151 | MR | Zbl
[21] Schottky groups and Mumford curves, Lecture Notes in Mathematics, 817, Springer, Berlin, 1980 | MR | Zbl
[22] Iwasawa theory for elliptic curves, Arithmetic theory of elliptic curves (Cetraro, 1997) (Lecture Notes in Math.), Volume 1716, Springer, Berlin, 1999, pp. 51-144 | MR | Zbl
[23] Heights and the special values of -series, Number theory (Montreal, Que., 1985) (CMS Conf. Proc.), Volume 7, Amer. Math. Soc., Providence, RI, 1987, pp. 115-187 | MR | Zbl
[24] Kolyvagin’s work on modular elliptic curves, -functions and arithmetic (Durham, 1989) (London Math. Soc. Lecture Note Ser.), Volume 153, Cambridge Univ. Press, Cambridge, 1991, pp. 235-256 | Zbl
[25] Heegner points and derivatives of -series, Invent. Math., Volume 84 (1986) no. 2, pp. 225-320 | DOI | MR | Zbl
[26] Groupes de monodromie en géométrie algébrique. I, Springer-Verlag, Berlin, 1972 Séminaire de Géométrie Algébrique du Bois-Marie 1967–1969 (SGA 7 I), Dirigé par A. Grothendieck. Avec la collaboration de M. Raynaud et D. S. Rim, Lecture Notes in Mathematics, Vol. 288 | MR
[27] Automorphic forms on , Springer-Verlag, Berlin, 1970 (Lecture Notes in Mathematics, Vol. 114) | MR | Zbl
[28] Level lowering for modular mod representations over totally real fields, Math. Ann., Volume 313 (1999) no. 1, pp. 141-160 | DOI | MR | Zbl
[29] Mazur’s principle for totally real fields of odd degree, Compositio Math., Volume 116 (1999) no. 1, pp. 39-79 | DOI | MR | Zbl
[30] Correspondences on Shimura curves and Mazur’s principle at , Pacific J. Math., Volume 213 (2004) no. 2, pp. 267-280 | DOI | MR | Zbl
[31] Integral Hodge theory and congruences between modular forms, Duke Math. J., Volume 80 (1995) no. 2, pp. 419-484 | DOI | MR | Zbl
[32] Local Diophantine properties of Shimura curves, Math. Ann., Volume 270 (1985) no. 2, pp. 235-248 | DOI | MR | Zbl
[33] Finiteness of and SH for a subclass of Weil curves, Izv. Akad. Nauk SSSR Ser. Mat., Volume 52 (1988) no. 3, p. 522-540, 670–671 | MR | Zbl
[34] Finiteness of SH over totally real fields, Izv. Akad. Nauk SSSR Ser. Mat., Volume 55 (1991) no. 4, pp. 851-876 | MR | Zbl
[35] On the Birch and Swinnerton-Dyer conjecture over totally real fields, Dipartimento di Matematica P. e A., Padova (2004) (Ph. D. Thesis)
[36] Arithmetic duality theorems, Perspectives in Mathematics, 1, Academic Press Inc., Boston, MA, 1986 | MR | Zbl
[37] Mean values of derivatives of modular -series, Ann. of Math. (2), Volume 133 (1991) no. 3, pp. 447-475 | DOI | MR | Zbl
[38] On the levels of mod Hilbert modular forms, J. Reine Angew. Math., Volume 537 (2001), pp. 33-65 | DOI | MR | Zbl
[39] On modular representations of arising from modular forms, Invent. Math., Volume 100 (1990) no. 2, pp. 431-476 | DOI | MR | Zbl
[40] Congruence relations between modular forms, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Warsaw, 1983), PWN, Warsaw (1984), pp. 503-514 | MR | Zbl
[41] Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. Math., Volume 15 (1972) no. 4, pp. 259-331 | DOI | MR | Zbl
[42] The special values of the zeta functions associated with Hilbert modular forms, Duke Math. J., Volume 45 (1978) no. 3, pp. 637-679 | DOI | MR | Zbl
[43] Introduction to the arithmetic theory of automorphic functions, Publications of the Mathematical Society of Japan, No. 11. Iwanami Shoten, Publishers, Tokyo, 1971 (Kanô Memorial Lectures, No. 1) | MR | Zbl
[44] The arithmetic of elliptic curves, Graduate Texts in Mathematics, 106, Springer-Verlag, New York, 1986 | MR | Zbl
[45] On Galois representations associated to Hilbert modular forms, Invent. Math., Volume 98 (1989) no. 2, pp. 265-280 | DOI | MR | Zbl
[46] Ring-theoretic properties of certain Hecke algebras, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 553-572 | DOI | MR | Zbl
[47] Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, 800, Springer, Berlin, 1980 | MR | Zbl
[48] Sur les valeurs de certaines fonctions automorphes en leur centre de symétrie, Compositio Math., Volume 54 (1985) no. 2, pp. 173-242 | Numdam | MR | Zbl
[49] Correspondances de Shimura et quaternions, Forum Math., Volume 3 (1991) no. 3, pp. 219-307 | DOI | MR | Zbl
[50] On ordinary -adic representations associated to modular forms, Invent. Math., Volume 94 (1988) no. 3, pp. 529-573 | DOI | MR | Zbl
[51] Modular elliptic curves and Fermat’s last theorem, Ann. of Math. (2), Volume 141 (1995) no. 3, pp. 443-551 | DOI | MR | Zbl
[52] Gross-Zagier formula for , Asian J. Math., Volume 5 (2001) no. 2, pp. 183-290 | MR | Zbl
[53] Heights of Heegner points on Shimura curves, Ann. of Math. (2), Volume 153 (2001) no. 1, pp. 27-147 | DOI | MR | Zbl
Cité par Sources :