On présente des représentations intégrales doubles pour les polynômes d'Hermite et de Laguerre multiples, aussi bien ceux de type I que ceux de type II. On montre aussi la connexion avec les représentations intégrales de certains noyaux de la théorie des matrices aléatoires.
We give integral representations for multiple Hermite and multiple Laguerre polynomials of both type I and II. We also show how these are connected with double integral representations of certain kernels from random matrix theory.
Keywords: Multiple orthogonal polynomials, random matrices, Christoffel-Darboux formula
Mot clés : polynômes orthogonaux multiples, matrices aléatoires, formule de Christoffel-Darboux
@article{AIF_2005__55_6_2001_0, author = {M. BLEHER, Pavel and B.J. Kuijlaars, Arno}, title = {Integral representations for multiple {Hermite} and multiple {Laguerre} polynomials}, journal = {Annales de l'Institut Fourier}, pages = {2001--2014}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {6}, year = {2005}, doi = {10.5802/aif.2148}, mrnumber = {2187942}, zbl = {1084.33008}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.2148/} }
TY - JOUR AU - M. BLEHER, Pavel AU - B.J. Kuijlaars, Arno TI - Integral representations for multiple Hermite and multiple Laguerre polynomials JO - Annales de l'Institut Fourier PY - 2005 SP - 2001 EP - 2014 VL - 55 IS - 6 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.2148/ DO - 10.5802/aif.2148 LA - en ID - AIF_2005__55_6_2001_0 ER -
%0 Journal Article %A M. BLEHER, Pavel %A B.J. Kuijlaars, Arno %T Integral representations for multiple Hermite and multiple Laguerre polynomials %J Annales de l'Institut Fourier %D 2005 %P 2001-2014 %V 55 %N 6 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.2148/ %R 10.5802/aif.2148 %G en %F AIF_2005__55_6_2001_0
M. BLEHER, Pavel; B.J. Kuijlaars, Arno. Integral representations for multiple Hermite and multiple Laguerre polynomials. Annales de l'Institut Fourier, Tome 55 (2005) no. 6, pp. 2001-2014. doi : 10.5802/aif.2148. https://www.numdam.org/articles/10.5802/aif.2148/
[1] Multiple orthogonal polynomials, J. Comput. Appl. Math., Volume 99 (1998), pp. 423-447 | DOI | MR | Zbl
[2] Large
[3] Multiple orthogonal polynomials for classical weights, Trans. Amer. Math. Soc., Volume 355 (2003), pp. 3887-3914 | DOI | MR | Zbl
[4] Phase transition of the largest eigenvalue for non-null complex sample covariance matrices (to appear in Ann. Prob., preprint math.PR/0403022, http://arxiv.org/abs/math.PR/0403022)
[5] Random matrices with external source and multiple orthogonal polynomials, Internat. Math. Research Notices (2004), pp. 109-129 | MR | Zbl
[6] Large
[7] Biorthogonal ensembles, Nuclear Phys., B, Volume 536 (1999), pp. 704-732 | MR | Zbl
[8] Correlations of nearby levels induced by a random potential, Nucl. Phys., B, Volume 479 (1996), pp. 697-706 | DOI | MR | Zbl
[9] Spectral form factor in a random matrix theory, Phys. Rev., Volume E 55 (1997), pp. 4067-4083 | MR
[10] Extension of level-spacing universality, Phys. Rev., Volume E 56 (1997), pp. 264-269
[11] Universal singularity at the closure of a gap in a random matrix theory, Phys. Rev., Volume E 57 (1998), pp. 4140-4149 | MR
[12] Level spacing of random matrices in an external source, Phys. Rev., Volume E 58 (1998), pp. 7176-7185 | MR
[13] A Christoffel-Darboux formula for multiple orthogonal polynomials, J. Approx. Theory, Volume 130 (2004), pp. 188-200 | MR | Zbl
[14] Differential operators on a semisimple Lie algebra, Amer. J. Math., Volume 79 (1957), pp. 87-120 | DOI | MR | Zbl
[15] Polynuclear growth model GOE
[16] The planar approximation II, J. Math. Phys., Volume 21 (1980), pp. 411-421 | DOI | MR | Zbl
[17] Universality of the local spacing distribution in certain ensembles of Hermitian Wigner matrices, Comm. Math. Phys., Volume 215 (2001) no. 3, pp. 683-705 | DOI | MR | Zbl
[18] Rational Approximation and Orthogonality, Translations of Mathematical Monographs, 92, Amer. Math. Soc., Providence R.I, 1991 | MR | Zbl
[19] The Pearcey process (preprint math.PR/0412005, http://arxiv.org/abs/math.PR/0412005) | Zbl
[20] Some classical multiple orthogonal polynomials, J. Comput. Appl. Math., Volume 127 (2001), pp. 317-347 | DOI | MR | Zbl
[21] Random Hermitian matrices in an external field, Nuclear Phys., Volume B 497 (1997), pp. 725-732 | MR | Zbl
[22] Universality of correlation functions of Hermitian random matrices in an external field, Comm. Math. Phys, Volume 194 (1998), pp. 631-650 | DOI | MR | Zbl
- Electrostatic Partners and Zeros of Orthogonal and Multiple Orthogonal Polynomials, Constructive Approximation, Volume 58 (2023) no. 2, p. 271 | DOI:10.1007/s00365-022-09609-x
- Universality for Random Matrices with Equi-spaced External Source: A Case Study of a Biorthogonal Ensemble, Journal of Statistical Physics, Volume 188 (2022) no. 2 | DOI:10.1007/s10955-022-02937-z
- Asymptotic fluctuations of geometric q-TASEP, geometric q-PushTASEP and q-PushASEP, Stochastic Processes and their Applications, Volume 148 (2022), p. 227 | DOI:10.1016/j.spa.2022.02.007
- Phase Transitions for Products of Characteristic Polynomials under Dyson Brownian Motion, Acta Mathematica Sinica, English Series, Volume 37 (2021) no. 3, p. 509 | DOI:10.1007/s10114-020-9445-7
- Global fluctuations for Multiple Orthogonal Polynomial Ensembles, Journal of Functional Analysis, Volume 281 (2021) no. 5, p. 109062 | DOI:10.1016/j.jfa.2021.109062
- Orthogonal and Multiple Orthogonal Polynomials, Random Matrices, and Painlevé Equations, Orthogonal Polynomials (2020), p. 629 | DOI:10.1007/978-3-030-36744-2_22
- Propagation of Singular Behavior for Gaussian Perturbations of Random Matrices, Communications in Mathematical Physics, Volume 362 (2018) no. 1, p. 1 | DOI:10.1007/s00220-018-3195-8
- On global fluctuations for non-colliding processes, The Annals of Probability, Volume 46 (2018) no. 3 | DOI:10.1214/17-aop1185
- Pfaffian Schur processes and last passage percolation in a half-quadrant, The Annals of Probability, Volume 46 (2018) no. 6 | DOI:10.1214/17-aop1226
- Some new results on the eigenvalues of complex non-central Wishart matrices with a rank-1 mean, Journal of Multivariate Analysis, Volume 149 (2016), p. 30 | DOI:10.1016/j.jmva.2016.03.003
- Large complex correlated Wishart matrices: Fluctuations and asymptotic independence at the edges, The Annals of Probability, Volume 44 (2016) no. 3 | DOI:10.1214/15-aop1022
- Average characteristic polynomials of determinantal point processes, Annales de l'Institut Henri Poincaré, Probabilités et Statistiques, Volume 51 (2015) no. 1 | DOI:10.1214/13-aihp572
- Dyson Model, Bessel Processes, Schramm–Loewner Evolution, and the Dyson Model, Volume 11 (2015), p. 57 | DOI:10.1007/978-981-10-0275-5_3
- Correlation kernels for sums and products of random matrices, Random Matrices: Theory and Applications, Volume 04 (2015) no. 04, p. 1550017 | DOI:10.1142/s2010326315500173
- A phase transition for q-TASEP with a few slower particles, Stochastic Processes and their Applications, Volume 125 (2015) no. 7, p. 2674 | DOI:10.1016/j.spa.2015.01.009
- Random Matrices with Equispaced External Source, Communications in Mathematical Physics, Volume 328 (2014) no. 3, p. 1023 | DOI:10.1007/s00220-014-1988-y
- On Certain Wronskians of Multiple Orthogonal Polynomials, SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, Volume 10 (2014) | DOI:10.3842/sigma.2014.103
- Complex Brownian motion representation of the Dyson model, Electronic Communications in Probability, Volume 18 (2013) no. none | DOI:10.1214/ecp.v18-2554
- Ladder operators and differential equations for multiple orthogonal polynomials, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 20, p. 205204 | DOI:10.1088/1751-8113/46/20/205204
- The averaged characteristic polynomial for the Gaussian and chiral Gaussian ensembles with a source, Journal of Physics A: Mathematical and Theoretical, Volume 46 (2013) no. 34, p. 345204 | DOI:10.1088/1751-8113/46/34/345204
- STRUCTURE RELATIONS OF CLASSICAL MULTIPLE ORTHOGONAL POLYNOMIALS BY A GENERATING FUNCTION, Journal of the Korean Mathematical Society, Volume 50 (2013) no. 5, p. 1067 | DOI:10.4134/jkms.2013.50.5.1067
- RANDOM MATRIX MINOR PROCESSES RELATED TO PERCOLATION THEORY, Random Matrices: Theory and Applications, Volume 02 (2013) no. 04, p. 1350008 | DOI:10.1142/s2010326313500081
- Rank 1 real Wishart spiked model, Communications on Pure and Applied Mathematics, Volume 65 (2012) no. 11, p. 1528 | DOI:10.1002/cpa.21415
- Determinantal Process Starting from an Orthogonal Symmetry is a Pfaffian Process, Journal of Statistical Physics, Volume 146 (2012) no. 2, p. 249 | DOI:10.1007/s10955-011-0372-y
- System of Complex Brownian Motions Associated with the O’Connell Process, Journal of Statistical Physics, Volume 149 (2012) no. 3, p. 411 | DOI:10.1007/s10955-012-0602-y
- Nearest neighbor recurrence relations for multiple orthogonal polynomials, Journal of Approximation Theory, Volume 163 (2011) no. 10, p. 1427 | DOI:10.1016/j.jat.2011.05.003
- Noncolliding Squared Bessel Processes, Journal of Statistical Physics, Volume 142 (2011) no. 3, p. 592 | DOI:10.1007/s10955-011-0117-y
- Lectures on Random Matrix Models, Random Matrices, Random Processes and Integrable Systems (2011), p. 251 | DOI:10.1007/978-1-4419-9514-8_4
- Non-Equilibrium Dynamics of Dyson’s Model with an Infinite Number of Particles, Communications in Mathematical Physics, Volume 293 (2010) no. 2, p. 469 | DOI:10.1007/s00220-009-0912-3
- Universality in complex Wishart ensembles for general covariance matrices with 2 distinct eigenvalues, Journal of Multivariate Analysis, Volume 101 (2010) no. 5, p. 1203 | DOI:10.1016/j.jmva.2009.12.004
- Duality in random matrix ensembles for all β, Nuclear Physics B, Volume 817 (2009) no. 3, p. 224 | DOI:10.1016/j.nuclphysb.2009.02.019
- A note on biorthogonal ensembles, Journal of Approximation Theory, Volume 152 (2008) no. 2, p. 167 | DOI:10.1016/j.jat.2007.08.006
- Large n Limit of Gaussian Random Matrices with External Source, Part III: Double Scaling Limit, Communications in Mathematical Physics, Volume 270 (2007) no. 2, p. 481 | DOI:10.1007/s00220-006-0159-1
- Eigenvalue distributions for some correlated complex sample covariance matrices, Journal of Physics A: Mathematical and Theoretical, Volume 40 (2007) no. 36, pp. 11093-11103 | DOI:10.1088/1751-8113/40/36/009
- Asymptotic correlations for Gaussian and Wishart matrices with external source, International Mathematics Research Notices (2006) | DOI:10.1155/imrn/2006/27395
- Differential equations for multiple orthogonal polynomials with respect to classical weights: raising and lowering operators, Journal of Physics A: Mathematical and General, Volume 39 (2006) no. 13, p. 3311 | DOI:10.1088/0305-4470/39/13/010
- Large n Limit of Gaussian Random Matrices with External Source, Part II, Communications in Mathematical Physics, Volume 259 (2005) no. 2, pp. 367-389 | DOI:10.1007/s00220-005-1367-9
- Polynuclear growth model with external source and random matrix model with deterministic source, Physical Review E, Volume 71 (2005) no. 4 | DOI:10.1103/physreve.71.041606
- Large n Limit of Gaussian Random Matrices with External Source, Part I, Communications in Mathematical Physics, Volume 252 (2004) no. 1-3, pp. 43-76 | DOI:10.1007/s00220-004-1196-2
Cité par 39 documents. Sources : Crossref, NASA ADS