On dit qu’un billard polygonal
A planar polygonal billiard
Keywords: Blocking property, polygonal billiards, regular polygons, translation surfaces, Veech surfaces, torus branched covering, illumination, quadratic differentials
Mot clés : propriété de blocage, billards polygonaux, polygones réguliers, surfaces de translation, surfaces de Veech, revêtement ramifié du tore, illumination, différentielles quadratiques
@article{AIF_2005__55_4_1195_0, author = {Monteil, Thierry}, title = {On the finite blocking property}, journal = {Annales de l'Institut Fourier}, pages = {1195--1217}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {4}, year = {2005}, doi = {10.5802/aif.2124}, mrnumber = {2157167}, zbl = {1076.37029}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2124/} }
TY - JOUR AU - Monteil, Thierry TI - On the finite blocking property JO - Annales de l'Institut Fourier PY - 2005 SP - 1195 EP - 1217 VL - 55 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2124/ DO - 10.5802/aif.2124 LA - en ID - AIF_2005__55_4_1195_0 ER -
Monteil, Thierry. On the finite blocking property. Annales de l'Institut Fourier, Tome 55 (2005) no. 4, pp. 1195-1217. doi : 10.5802/aif.2124. http://www.numdam.org/articles/10.5802/aif.2124/
[Bos] Correspondence with Howard Masur (1986) (unpublished)
[Bou] Groupes et algèbres de Lie, Chap. 4, 5, 6, Masson, 1981 | MR | Zbl
[Cal] Veech surfaces and complete periodicity in genus
[Car] A brief introduction to buildings, Harmonic functions on trees and buildings (Contemp. Math.), Volume 206 (1997), pp. 45-77 | Zbl
[EO] Asymptotics of numbers of branched coverings of a torus and volumes of moduli spaces of holomorphic differentials, Invent. Math., Volume 145 (2001) no. 1, pp. 59-103 | DOI | MR | Zbl
[Fo]
(1990) (Zadaqi Leningradskih Matematitcheskih Olimpiad, Leningrad)[HS] Polygonal billiards with small obstacles, J. Statist. Phys., Volume 90 (1998) no. 1,2, pp. 453-466 | MR | Zbl
[Kl] Is every polygonal region illuminable from some point?, Amer. Math. Monthly, Volume 76 (1969), pp. 80 | MR
[KMS] Ergodicity of billiard flows and quadratic differentials, Ann. Math., Volume 124 (1986) no. 2, pp. 293-311 | DOI | MR | Zbl
[Ko] Lyapunov exponents and Hodge theory, The mathematical beauty of physics (Saclay, 1996) (Adv. Ser. Math. Phys.), Volume 24 (1997), pp. 318-332 | Zbl
[KW] Old and new unsolved problems in plane geometry and number theory, Math. Assoc. America, 1991 | MR | Zbl
[KZ] Connected components of the moduli spaces of Abelian differentials with prescribed singularities, Invent. Math., Volume 153 (2003) no. 3, pp. 631-678 | DOI | MR | Zbl
[Mc] Billiards and Teichmüller curves on Hilbert modular surfaces, J. Amer. Math. Soc., Volume 16 (2003), pp. 857-885 | DOI | MR | Zbl
[Mo] A counter-example to the theorem of Hiemer and Snurnikov, J. Statist. Phys., Volume 114 (2004) no. 5,6, pp. 1619-1623 | MR | Zbl
[Mo2] Finite blocking property versus pure periodicity (Preprint)
[MT] Rational billiards and flat structures (Handbook on dynamical systems), Volume 1A (2002), pp. 1015-1089 | Zbl
[ST] Inhomogeneous Diophantine Approximation and Angular Recurrence for Polygonal Billiards, Mat. Sb., Volume 194 (2003) no. 2, pp. 129-144 | MR | Zbl
[To] Polygonal rooms not illuminable from every point, Amer. Math. Monthly, Volume 102 (1995) no. 10, pp. 867-879 | DOI | MR | Zbl
[Ve] Teichmüller curves in moduli space, Eisenstein series and an application to triangular billiards, Invent. Math., Volume 97 (1989) no. 3, pp. 553-583 | DOI | MR | Zbl
[Vo] Planar structures and billiards in rational polygons: the Veech alternative, Russian Math. Surveys, Volume 51 (1996) no. 5, pp. 779-817 | DOI | MR | Zbl
[ZK] Topological transitivity of billiards in polygons, Mat. Zametki, Volume 18 (1975) no. 2, pp. 291-300 | MR | Zbl
[Zo] Private communication (2003)
- Algebraic intersection for a family of Veech surfaces, Annales Henri Lebesgue, Volume 7 (2024), pp. 787-821 | DOI:10.5802/ahl.211 | Zbl:7914806
- Central points of the double heptagon translation surface are not connection points, Bulletin de la Société Mathématique de France, Volume 150 (2022) no. 2, pp. 459-472 | DOI:10.24033/bsmf.2851 | Zbl:1502.30122
- Periodic points on the regular and double
-gon surfaces, Geometriae Dedicata, Volume 216 (2022) no. 6, p. 17 (Id/No 69) | DOI:10.1007/s10711-022-00730-6 | Zbl:1504.32032 - Marked points on translation surfaces, Geometry Topology, Volume 25 (2021) no. 6, pp. 2913-2961 | DOI:10.2140/gt.2021.25.2913 | Zbl:1478.32036
- Everything is illuminated, Geometry Topology, Volume 20 (2016) no. 3, p. 1737 | DOI:10.2140/gt.2016.20.1737
- Blocking: New examples and properties of products, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 2, pp. 569-578 | DOI:10.1017/s0143385708000321 | Zbl:1160.37339
- Finite blocking property versus pure periodicity, Ergodic Theory and Dynamical Systems, Volume 29 (2009) no. 3, pp. 983-996 | DOI:10.1017/s014338570800031x | Zbl:1187.37062
- Blocking light in compact Riemannian manifolds, Geometry Topology, Volume 11 (2007), pp. 867-887 | DOI:10.2140/gt.2007.11.867 | Zbl:1135.53028
- Infinitely generated Veech groups, Duke Mathematical Journal, Volume 123 (2004) no. 1 | DOI:10.1215/s0012-7094-04-12312-8
Cité par 9 documents. Sources : Crossref, zbMATH