On démontre que pour toute variété non-captive asymptotiquement hyperbolique ou asymptotiquement conique, le champs de radiation introduit par F.G. Friedlander qui est l'opérateur envoyant la donnée de Cauchy pour l'équation des ondes sur l'asymptotique rééchelonné de l'onde, est un opérateur intégral de Fourier. La relation canonique sous- jacente est associée au temps de séjour, ou fonction de Busemann, des géodésiques. Comme conséquence, on obtient des informations sur le comportement à haute fréquence de l'opérateur de Poisson dans ces cadres géométriques.
We show that the ``radiation field'' introduced by F.G. Friedlander, mapping Cauchy data for the wave equation to the rescaled asymptotic behavior of the wave, is a Fourier integral operator on any non-trapping asymptotically hyperbolic or asymptotically conic manifold. The underlying canonical relation is associated to a ``sojourn time'' or ``Busemann function'' for geodesics. As a consequence we obtain some information about the high frequency behavior of the scattering Poisson operator in these geometric settings.
Keywords: Radiation field, sojourn time, Busemann function, high frequency, Eisenstein function
Mot clés : champs de radiation, temps de séjour, fonction de Busemann, haute fréquence, fonction Eisenstein
@article{AIF_2005__55_1_213_0, author = {S\'a Barreto, Ant\^onio and Wunsch, Jared}, title = {The radiation field is a {Fourier} integral operator}, journal = {Annales de l'Institut Fourier}, pages = {213--227}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {55}, number = {1}, year = {2005}, doi = {10.5802/aif.2096}, mrnumber = {2141696}, zbl = {1091.58018}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2096/} }
TY - JOUR AU - Sá Barreto, Antônio AU - Wunsch, Jared TI - The radiation field is a Fourier integral operator JO - Annales de l'Institut Fourier PY - 2005 SP - 213 EP - 227 VL - 55 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2096/ DO - 10.5802/aif.2096 LA - en ID - AIF_2005__55_1_213_0 ER -
%0 Journal Article %A Sá Barreto, Antônio %A Wunsch, Jared %T The radiation field is a Fourier integral operator %J Annales de l'Institut Fourier %D 2005 %P 213-227 %V 55 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2096/ %R 10.5802/aif.2096 %G en %F AIF_2005__55_1_213_0
Sá Barreto, Antônio; Wunsch, Jared. The radiation field is a Fourier integral operator. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 213-227. doi : 10.5802/aif.2096. http://www.numdam.org/articles/10.5802/aif.2096/
[1] Structure of the semi-classical amplitude for general scattering relations (In preparation)
[2] Fourier integral operators, Progress in Mathematics, 130, Boston, MA, 1996 | MR | Zbl
[3] The spectrum of positive elliptic operators and periodic geodesics, Invent. Math, Volume 29 (1975), pp. 39-79 | DOI | MR | Zbl
[4] Radiation fields and hyperbolic scattering theory, Math. Proc. Cambridge Philos. Soc., Volume 88 (1980) no. 3, pp. 483-515 | DOI | MR | Zbl
[5] Notes on the wave equation on asymptotically Euclidean manifolds, J. Funct. Anal., Volume 184 (2001) no. 1, pp. 1-18 | DOI | MR | Zbl
[6] Volume and area renormalizations for conformally compact Einstein metrics (The Proceedings of the 19th Winter School ``Geometry and Physics'' (Srn’i, 1999)), Volume 63 (2000), pp. 31-42 | Zbl
[7] Sojourn times and asymptotic properties of the scattering matrix (Proceedings of the Oji Seminar on Algebraic Analysis and the RIMS Symposium on Algebraic Analysis), Volume 12 (1976/77), pp. 69-88 | Zbl
[8] The Schrödinger propagator for scattering metrics (2003) (Preprint)
[9] Recovering asymptotics of metrics from fixed energy scattering data, Invent. Math., Volume 137 (1999) no. 1, pp. 127-143 | DOI | MR | Zbl
[10] Inverse scattering on asymptotically hyperbolic manifolds, Acta Math., Volume 184 (2000) no. 1, pp. 41-86 | DOI | MR | Zbl
[11] Riemannian geometry and geometric analysis, third ed., Universitext, Springer-Verlag, Berlin, 2002 | MR | Zbl
[12] Scattering theory, Academic Press, New York, 1967 | MR | Zbl
[13] High frequency asymptotics for the scattering matrix and the inverse problem of acoustical scattering, Comm. Pure Appl. Math., Volume 29 (1976), pp. 261-291 | DOI | MR | Zbl
[14] Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal., Volume 75 (1987) no. 2, pp. 260-310 | DOI | MR | Zbl
[15] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces,, Spectral and scattering theory (Sanda, 1992) (1994), pp. 85-130 | Zbl
[16] Geometric scattering theory, 1995 | Zbl
[17] Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, Spectral and scattering theory (Sanda, 1992) (1994), pp. 85-130 | Zbl
[18] Sojourn times, singularities of the scattering kernel and inverse problems, MSRI Publications, 47, Cambridge University Press, to appear., 2003 | MR | Zbl
[19] Asymptotic behavior of scattering amplitudes in semi-classical and low energy limits, Ann. Inst. Fourier (Grenoble), Volume 39 (1989) no. 1, pp. 155-192 | DOI | Numdam | MR | Zbl
[20] Radiation fields, scattering and inverse scattering on asymptotically hyperbolic manifolds (Preprint) | MR
[21] Radiation fields on asymptotically Euclidean manifolds, Comm. Partial Differential Equations, Volume 28 (2003) no. 9-10, pp. 1661-1673 | DOI | MR | Zbl
Cité par Sources :