Non-Kähler compact complex manifolds associated to number fields
[Variétés complexes compactes non kähleriennes associées à des corps de nombres]
Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 161-171.

Etant donnés des corps de nombres K avec s>0 plongements réels et 2t>0 plongements complexes, et des sous groupes “admissibles” U du groupe multiplicatif des entiers inversibles de K, nous construisons et étudions certaines variétés complexes compactes X(K,U). Entre autres, nous montrons que ces variétés ne sont pas kähleriennes, mais admettent des métriques localement conformément kähleriennes lorsque t=1. En particulier, nous donnons un contre-exemple à une conjecture de I. Vaisman.

For algebraic number fields K with s>0 real and 2t>0 complex embeddings and “admissible” subgroups U of the multiplicative group of integer units of K we construct and investigate certain (s+t)-dimensional compact complex manifolds X(K,U). We show among other things that such manifolds are non-Kähler but admit locally conformally Kähler metrics when t=1. In particular we disprove a conjecture of I. Vaisman.

DOI : 10.5802/aif.2093
Classification : 32J18, 32M17
Keywords: Compact complex manifolds, algebraic number fields, algebraic units, locally conformally Kähler metrics
Mot clés : variété complexe compacte, corps de nombres, métrique localement conformément Kählerienne.
Oeljeklaus, Karl 1 ; Toma, Matei 

1 Université d'Aix-Marseille I, LATP-UMR(CNRS) 6632, CMI, 39, rue Joliot-Curie, 13453 Marseille Cedex 13 (France), Institute of Mathematics of the Romanian Academy, Bucharest, 014700 (Roumanie)
@article{AIF_2005__55_1_161_0,
     author = {Oeljeklaus, Karl and Toma, Matei},
     title = {Non-K\"ahler compact complex manifolds associated to number fields},
     journal = {Annales de l'Institut Fourier},
     pages = {161--171},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {55},
     number = {1},
     year = {2005},
     doi = {10.5802/aif.2093},
     mrnumber = {2141693},
     zbl = {1071.32017},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2093/}
}
TY  - JOUR
AU  - Oeljeklaus, Karl
AU  - Toma, Matei
TI  - Non-Kähler compact complex manifolds associated to number fields
JO  - Annales de l'Institut Fourier
PY  - 2005
SP  - 161
EP  - 171
VL  - 55
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2093/
DO  - 10.5802/aif.2093
LA  - en
ID  - AIF_2005__55_1_161_0
ER  - 
%0 Journal Article
%A Oeljeklaus, Karl
%A Toma, Matei
%T Non-Kähler compact complex manifolds associated to number fields
%J Annales de l'Institut Fourier
%D 2005
%P 161-171
%V 55
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2093/
%R 10.5802/aif.2093
%G en
%F AIF_2005__55_1_161_0
Oeljeklaus, Karl; Toma, Matei. Non-Kähler compact complex manifolds associated to number fields. Annales de l'Institut Fourier, Tome 55 (2005) no. 1, pp. 161-171. doi : 10.5802/aif.2093. http://www.numdam.org/articles/10.5802/aif.2093/

[1] A.I. Borevich; I.R. Shafarevich Number theory, Academic Press, New York-London, 1966 | Zbl

[2] S. Dragomir; L. Ornea Locally conformal Kähler geometry, Progress in Mathematics, Birkhäuser, Boston, 1998 | MR | Zbl

[3] M. Inoue On surfaces of class VII 0 , Invent. Math., Volume 24 (1974), pp. 269-310 | DOI | MR | Zbl

[4] C.A. Weibel An introduction to homological algebra, Cambridge, 1994 | MR | Zbl

Cité par Sources :