L-functions of automorphic forms and combinatorics: Dyck paths
[Fonctions L de formes automorphes et combinatoires : chemins de Dyck]
Annales de l'Institut Fourier, Tome 54 (2004) no. 7, pp. 2105-2141.

Nous donnons une interprétation combinatoire pour les moments positifs des valeurs au bord de la bande critique des fonctions L de formes modulaires de GL(2) et GL(3). Nous en déduisons des résultats concernant la taille asymptotique de ces moments. Nous étendons cette interprétation aux moments tordus par les valeurs propres des opérateurs de Hecke.

We give a combinatorial interpretation for the positive moments of the values at the edge of the critical strip of the L-functions of modular forms of GL(2) and GL(3). We deduce some results about the asymptotics of these moments. We extend this interpretation to the moments twisted by the eigenvalues of Hecke operators.

DOI : 10.5802/aif.2076
Classification : 11F11, 11F12, 11F67, 11M41, 05A15, 05A19, 11B75, 11B83
Keywords: Symmetric square, modular form, $L$-function, Dyck path, combinatorics, Narayana number
Mot clés : carré symétrique, forme modulaire, fonction $L$, chemin de Dyck, combinatoire, nombre de Narayana
Habsieger, Laurent 1 ; Royer, Emmanuel 

1 Université Claude Bernard Lyon I, Institut Girard Desargues, CNRS UMR 5028, 43 boulevard du 11 novembre 1918, 69622 Villeurbanne Cedex (France), Université Paul Valéry Montpellier III, MIAp, 34199 Montpellier cedex 5 (France)
@article{AIF_2004__54_7_2105_0,
     author = {Habsieger, Laurent and Royer, Emmanuel},
     title = {$L$-functions of automorphic forms and combinatorics: {Dyck} paths},
     journal = {Annales de l'Institut Fourier},
     pages = {2105--2141},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {54},
     number = {7},
     year = {2004},
     doi = {10.5802/aif.2076},
     mrnumber = {2139690},
     zbl = {1131.11340},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.2076/}
}
TY  - JOUR
AU  - Habsieger, Laurent
AU  - Royer, Emmanuel
TI  - $L$-functions of automorphic forms and combinatorics: Dyck paths
JO  - Annales de l'Institut Fourier
PY  - 2004
SP  - 2105
EP  - 2141
VL  - 54
IS  - 7
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.2076/
DO  - 10.5802/aif.2076
LA  - en
ID  - AIF_2004__54_7_2105_0
ER  - 
%0 Journal Article
%A Habsieger, Laurent
%A Royer, Emmanuel
%T $L$-functions of automorphic forms and combinatorics: Dyck paths
%J Annales de l'Institut Fourier
%D 2004
%P 2105-2141
%V 54
%N 7
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.2076/
%R 10.5802/aif.2076
%G en
%F AIF_2004__54_7_2105_0
Habsieger, Laurent; Royer, Emmanuel. $L$-functions of automorphic forms and combinatorics: Dyck paths. Annales de l'Institut Fourier, Tome 54 (2004) no. 7, pp. 2105-2141. doi : 10.5802/aif.2076. http://www.numdam.org/articles/10.5802/aif.2076/

[Cho34] S. Chowla On the k-analogue of a result in the theory of the Riemann zeta function, Math. Z, Volume 38 (1934), pp. 483-487 | DOI | JFM | MR | Zbl

[CM04] J. Cogdell; P. Michel On the Complex Moments of Symmetric power L functions at s=1, Int. Math. Res. Not. (2004) no. 31, pp. 1561-1617 | DOI | MR | Zbl

[Del03] C. Delaunay Computing the Modular Degree of an Elliptic Curve using L-functions, J. Théor. Nombres Bordeaux, Volume 15 (2003) no. 3 | Numdam | MR | Zbl

[GR00] I.S. Gradshteyn; I.M. Ryzhik Table of integrals, series, and products. Translated from the Russian. Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger., Academic Press Inc., San Diego, CA, 2000 | MR | Zbl

[GS02] A. Granville; K. Soundararajan Upper bounds for |L(1,χ)|, Q. J. Math., Volume 53 (2002) no. 3, pp. 265-284 | MR | Zbl

[ILS00] H. Iwaniec; W. Luo; P. Sarnak Low lying zeros of families of L-functions, Inst. Hautes Études Sci. Publ. Math. (2001) no. 91, pp. 55-131 | Numdam | MR | Zbl

[Luo99] W. Luo Values of symmetric square L-functions at 1, J. Reine Angew. Math (1999) no. 506, pp. 215-235 | MR | Zbl

[MV99] H.L. Montgomery; R.C. Vaughan Extreme values of Dirichlet L-functions at 1, (Zakopane-Kościelisko, 1997) (Number theory in progress), Volume Vol. 2 (1999), pp. 1039-1052 | Zbl

[Roy01] E. Royer Statistique de la variable aléatoire L(sym 2 f,1), Math. Ann., Volume 321 (2001) no. 3, pp. 667-687 | DOI | MR | Zbl

[Roy03] E. Royer Interprétation combinatoire des moments négatifs des valeurs de fonctions L au bord de la bande critique, Annales scientifiques de l'École Normale Supérieure, Volume 36 (2003) no. 4, pp. 601-620 | Numdam | MR | Zbl

[RW04] E. Royer; J. Wu Taille des valeurs de fonctions L de carrés symétriques au bord de la bande critique (2004) (Rev. Mat. Iberoamericana. To appear., http://www.carva.org/emmanuel.royer) | MR | Zbl

[Ser97] J.-P. Serre Répartition asymptotique des valeurs propres de l'opérateur de Hecke T p , J. Amer. Math. Soc., Volume 10 (1997) no. 1, pp. 75-102 | DOI | MR | Zbl

[Sul98] R.A. Sulanke Catalan path statistics having the Narayana distribution, Proceedings of the 7th Conference on Formal Power Series and Algebraic Combinatorics (Noisy-le-Grand, 1995), Volume vol. 180 (1998), pp. 369-389 | Zbl

[Ten95] G. Tenenbaum Introduction à la théorie analytique et probabiliste des nombres, Cours Spécialisés [Specialized Courses], vol. 1, Société Mathématique de France, Paris, 1995 | MR | Zbl

[Wat02] M. Watkins Computing the modular degree of an elliptic curve, Experiment. Math., Volume 11 (2002) no. 4, pp. 487-502 | MR | Zbl

Cité par Sources :