On donne, pour les domaines lisses bornés pseudoconvexes de , des conditions géométriques concernant le bord qui entraînent la compacité de l’opérateur -Neumann. Il est remarquable que la preuve de la compacité ne procède pas par verification des conditions suffisantes bien connues de type théorie du potentiel.
For smooth bounded pseudoconvex domains in , we provide geometric conditions on the boundary which imply compactness of the -Neumann operator. It is noteworthy that the proof of compactness does not proceed via verifying the known potential theoretic sufficient conditions.
Keywords: $\overline{\partial }$-Neumann operator, compactness, geometric conditions
Mot clés : opérateur $\overline{\partial }$-Neumann, compacité, conditions géométriques
@article{AIF_2004__54_3_699_0, author = {Straube, Emil}, title = {Geometric conditions which imply compactness of the ${\overline{\partial }}${-Neumann} operator}, journal = {Annales de l'Institut Fourier}, pages = {699--710}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {54}, number = {3}, year = {2004}, doi = {10.5802/aif.2030}, mrnumber = {2097419}, zbl = {1061.32028}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.2030/} }
TY - JOUR AU - Straube, Emil TI - Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator JO - Annales de l'Institut Fourier PY - 2004 SP - 699 EP - 710 VL - 54 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.2030/ DO - 10.5802/aif.2030 LA - en ID - AIF_2004__54_3_699_0 ER -
%0 Journal Article %A Straube, Emil %T Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator %J Annales de l'Institut Fourier %D 2004 %P 699-710 %V 54 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.2030/ %R 10.5802/aif.2030 %G en %F AIF_2004__54_3_699_0
Straube, Emil. Geometric conditions which imply compactness of the ${\overline{\partial }}$-Neumann operator. Annales de l'Institut Fourier, Tome 54 (2004) no. 3, pp. 699-710. doi : 10.5802/aif.2030. http://www.numdam.org/articles/10.5802/aif.2030/
[1] Small sets of infinite type are benign for the -Neumann problem, Proceedings of the American Math. Soc, Volume 103 (1988), pp. 569-578 | MR | Zbl
[2] Global regularity of the -Neumann problem: a survey of the -Sobolev theory, Several Complex Variables (MSRI Publications), Volume 37 (1999) | Zbl
[3] Boundary behavior of holomorphic functions on weakly pseudoconvex domains (1978) (Princeton University Ph.D. Thesis) | Zbl
[4] Global regularity of the -Neumann problem, Complex Analysis of Several Variables (Proc. Symp. Pure Math.), Volume 41 (1984), pp. 39-49 | Zbl
[5] Subelliptic estimates for the -Neumann problem on pseudoconvex domains, Annals of Mathematics (2), Volume 126 (1987), pp. 131-191 | MR | Zbl
[6] Partial Differential Equations in Several Complex Variables, Studies in Advanced Mathematics, American Mathematical Society/International Press, 2001 | MR | Zbl
[7] Compactness in the -Neumann problem, magnetic Schrödinger operators, and the Aharonov--Bohm effect (2003) (preprint) | MR | Zbl
[8] Several Complex Variables and the Geometry of Real Hypersurfaces, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1993 | MR | Zbl
[9] Regularité pour dans quelques domaines faiblement pseudo-convexes, Journal of Differential Geometry, Volume 13 (1978), pp. 559-576 | MR | Zbl
[10] The Neumann Problem for the Cauchy--Riemann Complex, Annals of Mathematics Studies, 75, Princeton University Press, 1972 | MR | Zbl
[11] Compactness of the -Neumann problem on convex domains, Journal of Functional Analysis, Volume 159 (1998), pp. 629-641 | MR | Zbl
[12] Compactness in the -Neumann problem, Complex Analysis and Geometry, Volume 9 (2001), pp. 141-160 | Zbl
[13] Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem, Journal of Math. Analysis and Applications, Volume 271 (2002) no. 1, pp. 267-282 | MR | Zbl
[13] Semi-classical analysis of Schrödinger operators and compactness in the -Neumann problem. (correction), J. Math. Anal. Appl., Volume 280 (2003) no. 1, pp. 195-196 | MR | Zbl
[14] On the compactness of the -Neumann operator, Ann. Fac. Sci. Toulouse Math (6), Volume 9 (2000), pp. 415-432 | Numdam | MR | Zbl
[15] A Hartogs domain with no analytic discs in the boundary for which the -Neumann problem is not compact (1997) (University of California Los Angeles Ph.D. Thesis)
[16] A sufficient condition for compactness of the -Neumann problem, Journal of Functional Analysis, Volume 195 (2002), pp. 190-205 | MR | Zbl
[17] Une classe de domaines pseudoconvexes, Duke Math. Journal, Volume 55 (1987), pp. 299-319 | MR | Zbl
[18] Plurisubharmonic functions and subellipticity of the -Neumann problem on non-smooth domains, Mathematical Research Letters, Volume 4 (1997), pp. 459-467 | MR | Zbl
[19] Weakly Differentiable Functions, Graduate Texts in Mathematics, 120, Springer-Verlag, 1989 | MR | Zbl
Cité par Sources :