Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness
[La lissité et géométrie des bords associées aux structures squelettes I : conditions suffisantes pour la lissité]
Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1941-1985.

Nous introduisons une structure squelette (M,U) dans n+1, qui consiste en un ensemble stratifié de Whitney de dimension n sur lequel est défini un “champ radial de vecteurs” multiformes U. C’est une extension de la notion du “Blum medial axis” d’une région dans n+1 avec un bord lisse générique. Puis, pour de telles structures squelettes, on peut définir “un bord associé” . Nous introduisons des invariants géométriques du champ radial de vecteurs U et un “flot radial” de M à . Ils nous permettent d’obtenir des conditions numériques suffisantes pour que le bord soit lisse, et de déterminer sa géométrie. Nous établissons en même temps l’existence d’un voisinage tubulaire d’un tel ensemble stratifié de Whitney.

We introduce a skeletal structure (M,U) in n+1, which is an n- dimensional Whitney stratified set M on which is defined a multivalued “radial vector field” U. This is an extension of notion of the Blum medial axis of a region in n+1 with generic smooth boundary. For such a skeletal structure there is defined an “associated boundary” . We introduce geometric invariants of the radial vector field U on M and a “radial flow” from M to . Together these allow us to provide sufficient numerical conditions for the smoothness of the boundary as well as allowing us to determine its geometry. In the course of the proof, we establish the existence of a tubular neighborhood for such a Whitney stratified set.

DOI : 10.5802/aif.1997
Classification : 57N80, 58A35, 68U05, 53A07
Keywords: skeletal structures, Whitney stratified sets, Blum medial axis, shock set, radial shape operator, grassfire flow, radial flow
Mot clés : structure squelette, ensemble stratifié de Whitney, axe moyen de Blum, ensemble de choc, opérateur de forme, flot radial
Damon, James 1

1 University of North Carolina, Department of Mathematics, Chapel Hill NC 27599 (USA)
@article{AIF_2003__53_6_1941_0,
     author = {Damon, James},
     title = {Smoothness and geometry of boundaries associated to skeletal structures {I:} sufficient conditions for smoothness},
     journal = {Annales de l'Institut Fourier},
     pages = {1941--1985},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {53},
     number = {6},
     year = {2003},
     doi = {10.5802/aif.1997},
     mrnumber = {2038785},
     zbl = {1047.57014},
     language = {en},
     url = {https://www.numdam.org/articles/10.5802/aif.1997/}
}
TY  - JOUR
AU  - Damon, James
TI  - Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness
JO  - Annales de l'Institut Fourier
PY  - 2003
SP  - 1941
EP  - 1985
VL  - 53
IS  - 6
PB  - Association des Annales de l’institut Fourier
UR  - https://www.numdam.org/articles/10.5802/aif.1997/
DO  - 10.5802/aif.1997
LA  - en
ID  - AIF_2003__53_6_1941_0
ER  - 
%0 Journal Article
%A Damon, James
%T Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness
%J Annales de l'Institut Fourier
%D 2003
%P 1941-1985
%V 53
%N 6
%I Association des Annales de l’institut Fourier
%U https://www.numdam.org/articles/10.5802/aif.1997/
%R 10.5802/aif.1997
%G en
%F AIF_2003__53_6_1941_0
Damon, James. Smoothness and geometry of boundaries associated to skeletal structures I: sufficient conditions for smoothness. Annales de l'Institut Fourier, Tome 53 (2003) no. 6, pp. 1941-1985. doi : 10.5802/aif.1997. https://www.numdam.org/articles/10.5802/aif.1997/

[BA] M. Brady; H. Asada Smoothed Local Symmetries and their Implementation, Intern. J. Robotics Research, Volume 3 (1984), pp. 36-61 | DOI

[BG] J. W. Bruce; P.J. Giblin Growth, motion, and 1-parameter families of symmetry sets, Proc. Royal Soc. Edinburgh, Volume 104A (1986), pp. 179-204 | DOI | MR | Zbl

[BGG] J.W. Bruce; P.J. Giblin; C.G. Gibson Symmetry sets, Proc. Royal Soc. Edinburgh, Volume 101A (1983), pp. 163-186 | MR | Zbl

[BGT] J.W. Bruce; P.J. Giblin; F. Tari Ridges, crests, and subparabolic lines of evolving surfaces, Int. J. Comp. Vision, Volume 18 (1996) no. 3, pp. 195-210 | DOI

[BN] H. Blum; R. Nagel Shape description using weighted symmetric axis features, Pattern Recognition, Volume 10 (1978), pp. 167-180 | DOI | Zbl

[Brz] L.N. Bryzgalova Singularities of the maximum of a function that depends on the parameters, Funct. Anal. Appl, Volume 11 (1977), pp. 49-51 | DOI | MR | Zbl

[D1] J. Damon Smoothness and Geometry of Boundaries Associated to Skeletal Structures II : Geometry in the Blum Case (to appear in Compositio Math) | MR | Zbl

[D2] J. Damon Determining the Geometry of Boundaries of Objects from Medical Data (submitted)

[Gb] P.J. Giblin; Roberto Cipolla and Ralph Martin (eds.) Symmetry Sets and Medial Axes in Two and Three Dimensions, The Mathematics of Surfaces (2000), pp. 306-321 | Zbl

[GG] M. Golubitsky; V. Guillemin Stable Mappings and their Singularities, Graduate Texts in Math., Springer, 1974 | MR | Zbl

[Gi] C.G. Gibson et al. Topological stability of smooth mappings, Lecture Notes in Math., 552, Springer, 1976 | MR | Zbl

[Go] M. Goresky Triangulation of Stratified Objects, Proc. Amer. Math. Soc., Volume 72 (1978), pp. 193-200 | DOI | MR | Zbl

[Hi] M. Hirsch Differential Topology, Graduate Texts in Mathematics, Springer, 1976 | MR | Zbl

[KTZ] B.B. Kimia; A. Tannenbaum; S. Zucker; O. Faugeras (ed.) Toward a computational theory of shape: An overview, Three Dimensional Computer Vision (1990)

[Le] M. Leyton A Process Grammar for Shape, Art. Intelligence, Volume 34 (1988), pp. 213-247 | DOI

[M1] J. Mather; M. Peixoto (ed.) Stratifications and mappings, Dynamical Systems (1973) | Zbl

[M2] J. Mather Distance from a manifold in Euclidean space, Proc. Symp. Pure Math., Volume 40 (1983) no. 2, pp. 199-216 | MR | Zbl

[Mu] J. Munkres Elementary Differential Topology, Annals Math. Studies, 54, Princeton University Press, 1961 | MR | Zbl

[P1] S. Pizer et al. Deformable M-reps for 3D Medical Image Segmentation (to appear), Int. J. Comp. Vision, Volume 55 (2003) no. 2-3

[P2] S. Pizer et al. Segmentation, Registration, and Shape Measurement of Variation via Image Object Shape, IEEE Trans. Med. Imaging, Volume 18 (1999), pp. 851-865 | DOI

[P3] S. Pizer et al. Multiscale Medial Loci and Their Properties (to appear), Int. J. Comp. Vision, Volume 55 (2003) no. 2-3

[SB] K. Siddiqi; S. Bouix; A. Tannenbaum; S. Zucker The Hamilton-Jacobi Skeleton, Int. J. Comp. Vision, Volume 48 (2002), pp. 215-231 | DOI | Zbl

[SN] G. Szekely; M. Naf; Ch. Brechbuhler; O. Kubler Calculating 3d Voronoi diagrams of large unrestricted point sets for skeleton generation of complex 3d shapes, Proc. 2nd Int. Workshop on Visual Form (1994), pp. 532-541

[V] J. Verona Stratified Mappings-Structure and Triangulability, Lecture Notes, 1102, Springer, 1984 | MR | Zbl

[Y] J. Yomdin On the local structure of the generic central set, Comp. Math., Volume 43 (1981), pp. 225-238 | Numdam | MR | Zbl

  • Dias, L. R. G.; Jelonek, Z. Symmetry Defect of n- Dimensional Complete Intersections in C2n1, Bulletin of the Brazilian Mathematical Society, New Series, Volume 55 (2024) no. 3 | DOI:10.1007/s00574-024-00414-7
  • Dias, L.; Farnik, M.; Jelonek, Z. Generic symmetry defect set of an algebraic curve, Proceedings of the American Mathematical Society (2024) | DOI:10.1090/proc/16741
  • Liu, Zhiyuan; Damon, James; Marron, J. S.; Pizer, Stephen Geometric and Statistical Models for Analysis of Two-Object Complexes, International Journal of Computer Vision, Volume 131 (2023) no. 8, p. 1877 | DOI:10.1007/s11263-023-01800-2
  • Liu, Zhiyuan; Schulz, Jörn; Taheri, Mohsen; Styner, Martin; Damon, James; Pizer, Stephen; Marron, J. S. Analysis of Joint Shape Variation from Multi-Object Complexes, Journal of Mathematical Imaging and Vision, Volume 65 (2023) no. 3, p. 542 | DOI:10.1007/s10851-022-01136-5
  • Pizer, Stephen M.; Marron, J. S.; Damon, James N.; Vicory, Jared; Krishna, Akash; Liu, Zhiyuan; Taheri, Mohsen Skeletons, Object Shape, Statistics, Frontiers in Computer Science, Volume 4 (2022) | DOI:10.3389/fcomp.2022.842637
  • Damon, James Rigidity Properties of the Blum Medial Axis, Journal of Mathematical Imaging and Vision, Volume 63 (2021) no. 1, p. 120 | DOI:10.1007/s10851-020-00998-x
  • Liu, Zhiyuan; Hong, Junpyo; Vicory, Jared; Damon, James N.; Pizer, Stephen M. Fitting unbranching skeletal structures to objects, Medical Image Analysis, Volume 70 (2021), p. 102020 | DOI:10.1016/j.media.2021.102020
  • Tu, Liyun; Styner, Martin; Vicory, Jared; Elhabian, Shireen; Wang, Rui; Hong, Junpyo; Paniagua, Beatriz; Prieto, Juan C.; Yang, Dan; Whitaker, Ross; Pizer, Stephen M. Skeletal Shape Correspondence Through Entropy, IEEE Transactions on Medical Imaging, Volume 37 (2018) no. 1, p. 1 | DOI:10.1109/tmi.2017.2755550
  • Damon, James; Gasparovic, Ellen Modeling Multi-object Configurations via Medial/Skeletal Linking Structures, International Journal of Computer Vision, Volume 124 (2017) no. 3, p. 255 | DOI:10.1007/s11263-017-1019-5
  • Saha, Punam K.; Borgefors, Gunilla; Sanniti di Baja, Gabriella Skeletonization and its applications – a review, Skeletonization (2017), p. 3 | DOI:10.1016/b978-0-08-101291-8.00002-x
  • Tu, Liyun; Vicory, Jared; Elhabian, Shireen; Paniagua, Beatriz; Prieto, Juan Carlos; Damon, James N.; Whitaker, Ross; Styner, Martin; Pizer, Stephen M. Entropy-based correspondence improvement of interpolated skeletal models, Computer Vision and Image Understanding, Volume 151 (2016), p. 72 | DOI:10.1016/j.cviu.2015.11.002
  • Schulz, Jörn; Pizer, Stephen M.; Marron, J. S.; Godtliebsen, Fred Non-linear Hypothesis Testing of Geometric Object Properties of Shapes Applied to Hippocampi, Journal of Mathematical Imaging and Vision, Volume 54 (2016) no. 1, p. 15 | DOI:10.1007/s10851-015-0587-7
  • Huckemann, Stephan F. (Semi-)Intrinsic Statistical Analysis on Non-Euclidean Spaces, Advances in Complex Data Modeling and Computational Methods in Statistics (2015), p. 103 | DOI:10.1007/978-3-319-11149-0_7
  • Eltzner, Benjamin; Jung, Sungkyu; Huckemann, Stephan Dimension Reduction on Polyspheres with Application to Skeletal Representations, Geometric Science of Information, Volume 9389 (2015), p. 22 | DOI:10.1007/978-3-319-25040-3_3
  • Ba, Wenlan; Ren, Ning; Cao, Lixin Geometry of 3D MAT and its application to moulding surfaces, Graphical Models, Volume 82 (2015), p. 1 | DOI:10.1016/j.gmod.2015.09.004
  • Saha, Punam K.; Strand, Robin; Borgefors, Gunilla Digital Topology and Geometry in Medical Imaging: A Survey, IEEE Transactions on Medical Imaging, Volume 34 (2015) no. 9, p. 1940 | DOI:10.1109/tmi.2015.2417112
  • Pizer, Stephen M.; Jung, Sungkyu; Goswami, Dibyendusekhar; Vicory, Jared; Zhao, Xiaojie; Chaudhuri, Ritwik; Damon, James N.; Huckemann, Stephan; Marron, J. S. Nested Sphere Statistics of Skeletal Models, Innovations for Shape Analysis (2013), p. 93 | DOI:10.1007/978-3-642-34141-0_5
  • Ba, Wenlan; Cao, Lixin; Liu, Jian Research on 3D medial axis transform via the saddle point programming method, Computer-Aided Design, Volume 44 (2012) no. 12, p. 1161 | DOI:10.1016/j.cad.2012.07.001
  • Younes, Laurent Spaces and manifolds of shapes in computer vision: An overview, Image and Vision Computing, Volume 30 (2012) no. 6-7, p. 389 | DOI:10.1016/j.imavis.2011.09.009
  • Diraco, Giovanni; Leone, Alessandro; Siciliano, Pietro, 2011 IEEE International Symposium on Industrial Electronics (2011), p. 1329 | DOI:10.1109/isie.2011.5984351
  • Musuvathy, Suraj; Cohen, Elaine; Damon, James Computing medial axes of generic 3D regions bounded by B-spline surfaces, Computer-Aided Design, Volume 43 (2011) no. 11, p. 1485 | DOI:10.1016/j.cad.2011.08.023
  • Yushkevich, Paul A. Continuous medial representation of brain structures using the biharmonic PDE, NeuroImage, Volume 45 (2009) no. 1, p. S99 | DOI:10.1016/j.neuroimage.2008.10.051
  • Miller, Lance Edward; Moore, Edward L. F.; Peters, Thomas J.; Russell, Alexander Topological Neighborhoods for Spline Curves: Practice Theory, Reliable Implementation of Real Number Algorithms: Theory and Practice, Volume 5045 (2008), p. 149 | DOI:10.1007/978-3-540-85521-7_9
  • Damon, James Swept regions and surfaces: Modeling and volumetric properties, Theoretical Computer Science, Volume 392 (2008) no. 1-3, p. 66 | DOI:10.1016/j.tcs.2007.10.004
  • Haviv, D.; Yomdin, Y. Uniform approximation of near-singular surfaces, Theoretical Computer Science, Volume 392 (2008) no. 1-3, p. 92 | DOI:10.1016/j.tcs.2007.10.005
  • Chen, Xianming; Riesenfeld, Richard F.; Cohen, Elaine; Damon, James Theoretically-based algorithms for robustly tracking intersection curves of deforming surfaces, Computer-Aided Design, Volume 39 (2007) no. 5, p. 389 | DOI:10.1016/j.cad.2007.02.015
  • Terriberry, Timothy B.; Damon, James N.; Pizer, Stephen M.; Joshi, Sarang C.; Gerig, Guido Population-Based Fitting of Medial Shape Models with Correspondence Optimization, Information Processing in Medical Imaging, Volume 4584 (2007), p. 700 | DOI:10.1007/978-3-540-73273-0_58
  • Han, Qiong; Merck, Derek; Levy, Josh; Villarruel, Christina; Damon, James N.; Chaney, Edward L.; Pizer, Stephen M. Geometrically Proper Models in Statistical Training, Information Processing in Medical Imaging, Volume 4584 (2007), p. 751 | DOI:10.1007/978-3-540-73273-0_62
  • Damon, James Tree Structure for Contractible Regions in ℝ3, International Journal of Computer Vision, Volume 74 (2007) no. 2, p. 103 | DOI:10.1007/s11263-006-0004-1
  • Blackmore, Denis; J. Peters, Thomas Computational topology, Open Problems in Topology II (2007), p. 493 | DOI:10.1016/b978-044452208-5/50049-1
  • Hästö, Peter Isometries of the quasihyperbolic metric, Pacific Journal of Mathematics, Volume 230 (2007) no. 2, p. 315 | DOI:10.2140/pjm.2007.230.315
  • Qiong Han; Pizer, S.M.; Damon, J.N., 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06) (2006), p. 85 | DOI:10.1109/cvprw.2006.105
  • Chen, Xianming; Riesenfeld, Richard F.; Cohen, Elaine; Damon, James Theoretically Based Robust Algorithms for Tracking Intersection Curves of Two Deforming Parametric Surfaces, Geometric Modeling and Processing - GMP 2006, Volume 4077 (2006), p. 101 | DOI:10.1007/11802914_8
  • Damon, James The global medial structure of regions in ℝ3, Geometry Topology, Volume 10 (2006) no. 4, p. 2385 | DOI:10.2140/gt.2006.10.2385
  • Yushkevich, Paul A.; Zhang, Hui; Gee, James C. Continuous Medial Representation for Anatomical Structures, IEEE Transactions on Medical Imaging, Volume 25 (2006) no. 12, p. 1547 | DOI:10.1109/tmi.2006.884634
  • Sinclair, Robert; Tanaka, Minoru Jacobi’s last geometric statement extends to a wider class of Liouville surfaces, Mathematics of Computation, Volume 75 (2006) no. 256, p. 1779 | DOI:10.1090/s0025-5718-06-01924-7
  • Fletcher, P. Thomas; Pizer, Stephen M.; Joshi, Sarang C. Shape Variation of Medial Axis Representations via Principal Geodesic Analysis on Symmetric Spaces, Statistics and Analysis of Shapes (2006), p. 29 | DOI:10.1007/0-8176-4481-4_2
  • Damon, James Determining the Geometry of Boundaries of Objects from Medial Data, International Journal of Computer Vision, Volume 63 (2005) no. 1, p. 45 | DOI:10.1007/s11263-005-4946-5

Cité par 38 documents. Sources : Crossref