Dans cet article, je traite des systèmes quantiques dont l’hamiltonien est non-hermitien
mais dont les niveaux d’énergie sont tous réels et positifs. De telles théories doivent
être symétriques sous
In this paper I discuss quantum systems whose Hamiltonians are non-Hermitian but whose
energy levels are all real and positive. Such theories are required to be symmetric under
Keywords:
Mot clés :
@article{AIF_2003__53_4_997_0, author = {Bender, Carl M.}, title = {Properties of non-hermitian quantum field theories}, journal = {Annales de l'Institut Fourier}, pages = {997--1008}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {53}, number = {4}, year = {2003}, doi = {10.5802/aif.1971}, mrnumber = {2033507}, zbl = {1069.81030}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1971/} }
TY - JOUR AU - Bender, Carl M. TI - Properties of non-hermitian quantum field theories JO - Annales de l'Institut Fourier PY - 2003 SP - 997 EP - 1008 VL - 53 IS - 4 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1971/ DO - 10.5802/aif.1971 LA - en ID - AIF_2003__53_4_997_0 ER -
%0 Journal Article %A Bender, Carl M. %T Properties of non-hermitian quantum field theories %J Annales de l'Institut Fourier %D 2003 %P 997-1008 %V 53 %N 4 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1971/ %R 10.5802/aif.1971 %G en %F AIF_2003__53_4_997_0
Bender, Carl M. Properties of non-hermitian quantum field theories. Annales de l'Institut Fourier, Colloque en l'honneur de Frédéric Pham, Tome 53 (2003) no. 4, pp. 997-1008. doi : 10.5802/aif.1971. https://www.numdam.org/articles/10.5802/aif.1971/
[8] Quantum Complex Henon-Heiles Potentials, Phys. Lett. A, Volume 281 (2001), pp. 311-316 | DOI | MR | Zbl
[1] PCT, Spin \& Statistics and all that, Benjamin, New York, 1964 | MR | Zbl
[2] A New Perturbative Approach to Nonlinear Problems, J. Math. Phys, Volume 30 (1989), pp. 1447-1455 | DOI | MR | Zbl
[3] Real Spectra in Non-Hermitian hamiltonians Having PT Symmetry, Phys. Rev. Lett., Volume 80 (1998), pp. 5243-5246 | DOI | MR | Zbl
[4] PT-Symmetric Quantum Mechanics, J. Math. Phys., Volume 40 (1999), pp. 2201-2229 | DOI | MR | Zbl
[4] Eigenvalues of complex Hamiltonians with PT-symmetry, Phys. Lett. A, Volume 250 (1998), pp. 29-32 | DOI | MR
[5] The ODE/IM correspondence PT-symmetric quantum mechanics, J. Phys. A, Math. Gen., Volume 34 (2002), p. 391-400 and 5679--5704 | MR
[5] On the reality of the eigenvalues for a class of PT-symmetric oscillators, Comm. Math. Phys., Volume 229 (2002), pp. 543-564 | DOI | MR | Zbl
[6] Calculation of the One-Point Green's Function for a -
[7] Bound States of Non-Hermitian Quantum Field Theories, Phys. Lett. A, Volume 291 (2001), pp. 197-202 | DOI | MR | Zbl
[9] Two-Point Green's Function in PT-Symmetric Theories, Phys. Lett. A, Volume 302 (2002), pp. 286-290 | DOI | MR | Zbl
[10] Complex Extension of Quantum Mechanics, Volume quant-ph 0208076 (2002) | MR
[11] Generalized
[11] Space of state vectors in PT-symmetric quantum mechanics, J. Phys. A, Volume 35 (2002), pp. 1709-1718 | DOI | MR | Zbl
Cité par Sources :