Le but de cet article est d’introduire une théorie des formes normales et des
déformations des courbes projectives planes qui tienne compte de leurs points
d’inflexion. On procède de la façon suivante. Soit
We study the local behaviour of inflection points of families of plane curves in the
projective plane. We develop normal forms and versal deformation concepts for holomorphic
function germs
Keywords: Plücker formulas, normal forms, inflection points, bifurcation diagrams, projective geometry
Mot clés : formules de Plücker, formes normales, points d'inflexion, diagrammes de bifurcation, géométrie projective
@article{AIF_2002__52_3_849_0, author = {Garay, Mauricio}, title = {On vanishing inflection points of plane curves}, journal = {Annales de l'Institut Fourier}, pages = {849--880}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {3}, year = {2002}, doi = {10.5802/aif.1904}, mrnumber = {1907390}, zbl = {1116.14301}, language = {en}, url = {https://www.numdam.org/articles/10.5802/aif.1904/} }
TY - JOUR AU - Garay, Mauricio TI - On vanishing inflection points of plane curves JO - Annales de l'Institut Fourier PY - 2002 SP - 849 EP - 880 VL - 52 IS - 3 PB - Association des Annales de l’institut Fourier UR - https://www.numdam.org/articles/10.5802/aif.1904/ DO - 10.5802/aif.1904 LA - en ID - AIF_2002__52_3_849_0 ER -
%0 Journal Article %A Garay, Mauricio %T On vanishing inflection points of plane curves %J Annales de l'Institut Fourier %D 2002 %P 849-880 %V 52 %N 3 %I Association des Annales de l’institut Fourier %U https://www.numdam.org/articles/10.5802/aif.1904/ %R 10.5802/aif.1904 %G en %F AIF_2002__52_3_849_0
Garay, Mauricio. On vanishing inflection points of plane curves. Annales de l'Institut Fourier, Tome 52 (2002) no. 3, pp. 849-880. doi : 10.5802/aif.1904. https://www.numdam.org/articles/10.5802/aif.1904/
[1] Normal forms for functions near degenerate critical points, the Weyl groups
[2] Mathematical methods of classical mechanics (Nauka) (1974 ; 1978), pp. 462 p | Zbl
[3] Wave front evolution and the equivariant Morse lemma, Comm. Pure Appl. Math., Volume 29 (1976) no. 6, pp. 557-582 | DOI | MR | Zbl
[4] Vanishing inflexions, Funct. Anal. Appl., Volume 18 (1984) no. 2, pp. 51-52 | MR | Zbl
[5] Singularity theory I, dynamical systems VI, VINITI, Moscow (1993), pp. 245 p
[6] The unfolding and determinacy theorems for subgroups of
[7] Théorie des points d'aplatissement évanescents des courbes planes et spatiales (2001) Thèse, Université de Paris 7, février (in English)
[8] On simple families of functions (2002) (Preprint Mainz Universität)
[9] Vector fields and functions on discriminants of complete intersections and bifurcation diagrams of projections, Funct. Anal. Appl., Volume 15 (1981), pp. 77-82 | Zbl
[10] Principles of algebraic geometry, Wiley Interscience, 1978 | MR | Zbl
[11] Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, Itogi Nauli Tekh., Ser. Sovrem Probl. Math., Noviejshie dostizh., Volume 33 (1988), pp. 215-234 | Zbl
[11] Singularities of the boundary of fundamental systems, flattening of projective curves, and Schubert cells, J. Soviet Math. (English transl.), Volume 52 (1990), pp. 3338-3349 | Zbl
[12] Bifurcations of flattening and Schubert cells (Advances Soviet Math. I) (1990), pp. 145-156
[13] Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Usp. Mat. Nauk, Volume 46 (1961) no. 5, pp. 79-119 | Zbl
[13] Flattening of projective curves, singularities of Schubert stratifications of Grassmann and flag varieties, bifurcations of Weierstrass points of algebraic curves, Russ. Math. Surveys (English transl.), Volume 46 (1992) no. 5, pp. 91-136 | DOI | Zbl
[14] Development of mathematics in the XIXth century, Lie groups history, frontiers and applications, Volume vol. 9 (1979), pp. 630 p. | Zbl
[15] Singularities of smooth functions and maps, London Math. Soc. Lecture Notes Series, vol. 58, Cambridge University Press, 1982 | MR | Zbl
[16] Stability of
[16] Stability of
[16] Stability of
[16] Stability of
[16] Stability of
[16] Stability of
[17] System der Analytischen Geometrie, Gessam. Wissen. Abhand., vol. Band 1 ; vol. 2, B.G. Teubner, 1834, 1898
[18] Numerical characters of a curve in projective n-space, Real and complex singularities (1977), pp. 475-495 | Zbl
[19] Locally semi-universal plane deformations of isolated singularities in complex space, Math. USSR Izv., Volume 32 (1968) no. 3, pp. 967-999 | Zbl
[20] Singularités symplectiques et de contact en géométrie différentielle des courbes et des surfaces (2001) (Thèse Université de Paris 7)
[21] Lagrangian and Legendrian singularities, Funct. Anal. Appl., Volume 10 (1976) no. 1 | Zbl
Cité par Sources :