Pour tout tore complexe de dimension 2, nous construisons une variété complexe compacte munie d’une action de qui compactifie de sorte que le quotient de par l’action de soit biholomorphe à . Pour un tore général , nous montrons que n’a pas de fonction méromorphe non constante.
For each 2-dimensional complex torus , we construct a compact complex manifold with a -action, which compactifies such that the quotient of by the -action is biholomorphic to . For a general , we show that has no non-constant meromorphic functions.
Keywords: compactification, complex torus
Mot clés : compactification, tore complexe
@article{AIF_2002__52_1_245_0, author = {Hwang, Jun-Muk and Varolin, Dror}, title = {A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions}, journal = {Annales de l'Institut Fourier}, pages = {245--253}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1884}, zbl = {0995.32011}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1884/} }
TY - JOUR AU - Hwang, Jun-Muk AU - Varolin, Dror TI - A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions JO - Annales de l'Institut Fourier PY - 2002 SP - 245 EP - 253 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1884/ DO - 10.5802/aif.1884 LA - en ID - AIF_2002__52_1_245_0 ER -
%0 Journal Article %A Hwang, Jun-Muk %A Varolin, Dror %T A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions %J Annales de l'Institut Fourier %D 2002 %P 245-253 %V 52 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1884/ %R 10.5802/aif.1884 %G en %F AIF_2002__52_1_245_0
Hwang, Jun-Muk; Varolin, Dror. A compactification of $({\mathbb {C}}^*)^4$ with no non-constant meromorphic functions. Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 245-253. doi : 10.5802/aif.1884. http://www.numdam.org/articles/10.5802/aif.1884/
[DPS] Compact complex manifolds with numerically effective tangent bundles, J. Alg. Geom., Volume 3 (1994), pp. 295-345 | MR | Zbl
[G] Äquivariante Kompaktifizierungen des , Math. Zeit., Volume 206 (1991), pp. 211-217 | MR | Zbl
[H] Ample subvarieties of algebraic varieties, Lecture Notes in Mathematics, Vol. 156, Springer-Verlag, Berlin-Heidelberg-New York, 1970 | MR | Zbl
[KP] Formal cohomology, analytic cohomology and non-algebraic manifolds, Compositio Math, Volume 74 (1990), pp. 299-325 | Numdam | MR | Zbl
[PS] Compactifications of : A survey, Proc. Symp. Pure Math, Volume 52 (1991) no. Part 2, pp. 455-466 | MR | Zbl
[RR] Holomorphic maps from to , Trans. Amer. Math. Soc., Volume 310 (1988), pp. 47-86 | MR | Zbl
Cité par Sources :