Soit une fonction de jauge suffisamment régulière. On dit qu’une mesure signée sur est -Zygmund s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille. De la même manière, on dit que est une mesure - symétrique s’il existe une constante positive telle que pour chaque paire de cubes adjacents de même taille, . Nous caractérisons les mesures de Zygmund et les mesures symétriques en termes de leurs extensions harmoniques. Nous montrons aussi que la condition quadratique commande l’existence de mesures -Zygmund (-symétriques) singulières. Le cas de la dimension un est bien connu, cependant les démonstrations correspondantes utilisent des techniques d’analyse complexe.
Let be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure is called -Zygmund if there exists a positive constant such that for any pair of adjacent cubes of the same size. Similarly, is called an - symmetric measure if there exists a positive constant such that for any pair of adjacent cubes of the same size, . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition governs the existence of singular -Zygmund (-symmetric) measures. In the one- dimensional case, the results are well known, but complex analysis techniques are used at certain steps of the corresponding proofs.
Keywords: doubling measures, Zygmund measures, harmonic extensions, quadratic condition
Mot clés : mesures doublantes, mesures de Zygmund, extensions harmoniques, condition quadratique
@article{AIF_2002__52_1_153_0, author = {Doubtsov, Evgueni and Nicolau, Artur}, title = {Symmetric and {Zygmund} measures in several variables}, journal = {Annales de l'Institut Fourier}, pages = {153--177}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {52}, number = {1}, year = {2002}, doi = {10.5802/aif.1881}, mrnumber = {1881575}, zbl = {1037.31005}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1881/} }
TY - JOUR AU - Doubtsov, Evgueni AU - Nicolau, Artur TI - Symmetric and Zygmund measures in several variables JO - Annales de l'Institut Fourier PY - 2002 SP - 153 EP - 177 VL - 52 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1881/ DO - 10.5802/aif.1881 LA - en ID - AIF_2002__52_1_153_0 ER -
%0 Journal Article %A Doubtsov, Evgueni %A Nicolau, Artur %T Symmetric and Zygmund measures in several variables %J Annales de l'Institut Fourier %D 2002 %P 153-177 %V 52 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1881/ %R 10.5802/aif.1881 %G en %F AIF_2002__52_1_153_0
Doubtsov, Evgueni; Nicolau, Artur. Symmetric and Zygmund measures in several variables. Annales de l'Institut Fourier, Tome 52 (2002) no. 1, pp. 153-177. doi : 10.5802/aif.1881. http://www.numdam.org/articles/10.5802/aif.1881/
[1] Inner functions, Bloch spaces and symmetric measures, Proc. London Math. Soc., Volume 79 (1999), pp. 318-352 | DOI | MR | Zbl
[2] Inner functions and cyclic vectors in the Bloch space, Trans. Amer. Math. Soc., Volume 323 (1991) no. 1, pp. 429-448 | DOI | MR | Zbl
[3] Bounded functions in the little Bloch space, Pacific J. Math., Volume 142 (1990), pp. 209-225 | MR | Zbl
[4] Intégrale d'aire et supports d'une mesure positive, C.R.A.S. Paris, Ser. I Math., Volume 296 (1983), pp. 231-232 | MR | Zbl
[5] On mappings, conformal at the boundary, J. d'Analyse Math., Volume 19 (1967), pp. 1-13 | DOI | MR | Zbl
[6] On removable singularities for the analytic Zygmund class, Michigan Math. J., Volume 43 (1996), pp. 51-65 | DOI | MR | Zbl
[7] Some weighted norm inequalities concerning the Schrödinger operator, Comment. Math. Helv., Volume 60 (1985), pp. 217-246 | DOI | MR | Zbl
[8] Weighted Norm Inequalities and Related Topics, Math. Studies, 116, North-Holland, 1985 | MR | Zbl
[9] Singular measures and domains not of Smirnov type, Duke Math. J., Volume 33 (1966), pp. 247-254 | DOI | MR | Zbl
[10] The theory of weights and the Dirichlet problem for elliptic equations, Ann. of Math., Volume 134 (1991), pp. 65-124 | DOI | MR | Zbl
[11] Symmetric structures on a closed curve, American J. Math., Volume 114 (1992), pp. 683-736 | DOI | MR | Zbl
[12] Trois notes sur les ensembles parfaits linéaires, Enseignement Math., Volume 15 (1969), pp. 185-192 | MR | Zbl
[13] Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach, Potential Analysis, Volume 9 (1998), pp. 229-260 | DOI | MR | Zbl
[14] Probability methods in the theory of conformal mappings, Leningrad Math. J., Volume 1 (1990), pp. 1-56 | MR | Zbl
[15] Two monotonic, singular, uniformly almost smooth functions, Duke Math. J., Volume 33 (1966), pp. 255-262 | DOI | MR | Zbl
[16] Inner functions in the hyperbolic little Bloch class, Michigan Math. J., Volume 45 (1998) no. 1, pp. 103-114 | DOI | MR | Zbl
[17] Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970 | MR | Zbl
Cité par Sources :