On étudie des résultats de trivialité pour les familles de Nash de submersions de Nash
propres. On travaille avec des variétés et des applications de Nash définies sur un corps
réel clos quelconque
We study triviality of Nash families of proper Nash submersions or, in a more general
setting, the triviality of pairs of proper Nash submersions. We work with Nash manifolds
and mappings defined over an arbitrary real closed field
Keywords: Nash manifold, Nash mapping, Nash triviality, real spectrum
Mot clés : variété de Nash, application de Nash, trivialité de Nash, spectre réel
@article{AIF_2001__51_5_1209_0, author = {Escribano, Jes\'us}, title = {Nash triviality in families of {Nash} mappings}, journal = {Annales de l'Institut Fourier}, pages = {1209--1228}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {5}, year = {2001}, doi = {10.5802/aif.1852}, mrnumber = {1860663}, zbl = {0979.14026}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1852/} }
TY - JOUR AU - Escribano, Jesús TI - Nash triviality in families of Nash mappings JO - Annales de l'Institut Fourier PY - 2001 SP - 1209 EP - 1228 VL - 51 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1852/ DO - 10.5802/aif.1852 LA - en ID - AIF_2001__51_5_1209_0 ER -
%0 Journal Article %A Escribano, Jesús %T Nash triviality in families of Nash mappings %J Annales de l'Institut Fourier %D 2001 %P 1209-1228 %V 51 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1852/ %R 10.5802/aif.1852 %G en %F AIF_2001__51_5_1209_0
Escribano, Jesús. Nash triviality in families of Nash mappings. Annales de l'Institut Fourier, Tome 51 (2001) no. 5, pp. 1209-1228. doi : 10.5802/aif.1852. http://www.numdam.org/articles/10.5802/aif.1852/
[BCR] Real Algebraic Geometry, Ergeb. Math. Grenzgeb., (3) 36, Springer-Verlag, Berlin - Heidelberg - New York, 1998 | MR | Zbl
[CS1] Nash triviality in families of Nash manifolds, Invent. Math, Volume 108 (1992), pp. 349-368 | DOI | MR | Zbl
[CS2] Thom's first isotopy lemma: a semialgebraic version with uniform bound, Real Analytic and Algebraic Geometry (1995), pp. 83-101 | Zbl
[DK] Locally Semialgebraic Spaces, Lecture Notes in Mathematics, 1173, Springer-Verlag, Berlin, 1985 | MR | Zbl
[GWPL] Topological stability of smooth mappings, Lecture Notes in Mathematics, 552, Springer-Verlag, Berlin, 1976 | MR | Zbl
[H] Semi-algebraic local triviality in semi-algebraic mappings, Amer. J. Math., Volume 102 (1980), pp. 291-302 | DOI | MR | Zbl
[R] Complexité des fonctions de Nash, Commun. Algebra, Volume 17 (1989) no. 6, pp. 1395-1406 | DOI | MR | Zbl
[Shi1] Nash Manifolds, Lecture Notes in Mathematics, 1269, Springer-Verlag, Berlin, 1987 | MR | Zbl
[Shi2] Geometry of Subanalytic and Semialgebraic Sets, Progress in Mathematics, vol. 150, Birkhäuser, Boston, 1997 | MR | Zbl
Cité par Sources :