Soit une mesure sur un domaine de tel que l’espace de Bergman des fonctions holomorphes dans possède un noyau reproduisant et que . La transformation de Berezin associée à est l’opérateur intégral
Let be a measure on a domain in such that the Bergman space of holomorphic functions in possesses a reproducing kernel and . The Berezin transform associated to is the integral operator
Keywords: Berezin transform, geodesic symmetry, Cartan domain, stochastic operator
Mot clés : transformation de Berezin, symétrie géodésique, domaine de Cartan, opérateur stochastique
@article{AIF_2001__51_4_1101_0, author = {Arazy, Jonathan and Engli\v{s}, Miroslav}, title = {Iterates and the boundary behavior of the {Berezin} transform}, journal = {Annales de l'Institut Fourier}, pages = {1101--1133}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {51}, number = {4}, year = {2001}, doi = {10.5802/aif.1847}, mrnumber = {1849217}, zbl = {0989.47027}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1847/} }
TY - JOUR AU - Arazy, Jonathan AU - Engliš, Miroslav TI - Iterates and the boundary behavior of the Berezin transform JO - Annales de l'Institut Fourier PY - 2001 SP - 1101 EP - 1133 VL - 51 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1847/ DO - 10.5802/aif.1847 LA - en ID - AIF_2001__51_4_1101_0 ER -
%0 Journal Article %A Arazy, Jonathan %A Engliš, Miroslav %T Iterates and the boundary behavior of the Berezin transform %J Annales de l'Institut Fourier %D 2001 %P 1101-1133 %V 51 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1847/ %R 10.5802/aif.1847 %G en %F AIF_2001__51_4_1101_0
Arazy, Jonathan; Engliš, Miroslav. Iterates and the boundary behavior of the Berezin transform. Annales de l'Institut Fourier, Tome 51 (2001) no. 4, pp. 1101-1133. doi : 10.5802/aif.1847. http://www.numdam.org/articles/10.5802/aif.1847/
[AL] Fixed points of the Berezin transform on multiply connected domains (1997) (Preprint)
[Ar] A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory (Contemporary Mathematics), Volume vol. 185 (1995), pp. 7-65 | Zbl
[AZ] Invariant mean value and harmonicity in Cartan and Siegel domains, Interaction between functional analysis, harmonic analysis, and probability (Columbia, MO, 1994) (Lecture Notes in Pure and Appl. Math.), Volume vol. 175 (1996), pp. 19-40 | Zbl
[FK] Function spaces and reproducing kernels on bounded symmetric domains, J. Funct. Anal., Volume 88 (1990), pp. 64-89 | DOI | MR | Zbl
[Fü] Poisson formula for semisimple Lie groups, Ann. Math., Volume 77 (1963), pp. 335-386 | DOI | MR | Zbl
[Ga] Uniform algebras, Prentice-Hall, Englewood Cliffs, 1969 | MR | Zbl
[Gd] Une généralisation des représentations de la moyenne pour les fonctions harmoniques, C. R. Acad. Sci. Paris, Volume 234 (1952), pp. 2137-2139 | MR | Zbl
[Go] Geometric theory of functions of a complex variable, Nauka, Moscou, 1966 | MR | Zbl
[He] Differential geometry and symmetric spaces, Academic Press, New York, 1962 | MR | Zbl
[Kr] Function theory of several complex variables, Wadsworth \& Brooks/Cole, Pacific Grove, 1992 | MR | Zbl
[KS] Boundary structure of bounded symmetric domains, Manuscripta Math., Volume 101 (2000), pp. 351-360 | DOI | MR | Zbl
[Le] Properties of the Berezin transform of bounded functions, Bull. Austral. Math. Soc., Volume 59 (1999), pp. 21-31 | DOI | MR | Zbl
[Lo] Bounded symmetric domains and Jordan pairs (1977) (University of California, Irvine)
[Zh] A limit property of the Berezin transform (1999) (Preprint)
Cité par Sources :