Nous calculons, en fonction des paramètres arithmétiques décris par Borel, les sous-groupes finis d’un groupe de Klein arithmétique maximal. Ceci est notamment appliquable à l’étude des 3-variétés arithmétiques hyperboliques.
Given a maximal arithmetic Kleinian group , we compute its finite subgroups in terms of the arithmetic data associated to by Borel. This has applications to the study of arithmetic hyperbolic 3-manifolds.
@article{AIF_2000__50_6_1765_0, author = {Chinburg, Ted and Friedman, Eduardo}, title = {The finite subgroups of maximal arithmetic kleinian groups}, journal = {Annales de l'Institut Fourier}, pages = {1765--1798}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {6}, year = {2000}, doi = {10.5802/aif.1807}, mrnumber = {2002g:11162}, zbl = {0973.20040}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1807/} }
TY - JOUR AU - Chinburg, Ted AU - Friedman, Eduardo TI - The finite subgroups of maximal arithmetic kleinian groups JO - Annales de l'Institut Fourier PY - 2000 SP - 1765 EP - 1798 VL - 50 IS - 6 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1807/ DO - 10.5802/aif.1807 LA - en ID - AIF_2000__50_6_1765_0 ER -
%0 Journal Article %A Chinburg, Ted %A Friedman, Eduardo %T The finite subgroups of maximal arithmetic kleinian groups %J Annales de l'Institut Fourier %D 2000 %P 1765-1798 %V 50 %N 6 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1807/ %R 10.5802/aif.1807 %G en %F AIF_2000__50_6_1765_0
Chinburg, Ted; Friedman, Eduardo. The finite subgroups of maximal arithmetic kleinian groups. Annales de l'Institut Fourier, Tome 50 (2000) no. 6, pp. 1765-1798. doi : 10.5802/aif.1807. http://www.numdam.org/articles/10.5802/aif.1807/
[1] Commensurability classes and volumes of hyperbolic 3-manifolds, Ann. Scuola Norm. Sup. Pisa, 8 (1981), 1-33. Also in Borel's Oeuvres, Berlin, Springer, 1983. | Numdam | MR | Zbl
,[2] An embedding theorem for quaternion algebras J. London Math. Soc., (2) 60 (1999), 33-44. | MR | Zbl
and ,[3] The smallest arithmetic hyperbolic 3-orbifold, Invent. Math., 86 (1986), 507-527. | MR | Zbl
and ,[4] The arithmetic hyperbolic 3-manifold of smallest volume, Ann. Scuola Norm. Sup. Pisa (to appear). | Numdam
, , and ,[5] Algebren, Springer Verlag, Berlin, 1935. | Zbl
,[6] Exceptional subgroups of GL2, Appendix to chapter XI of Introduction to Modular Forms by S. Lang, Berlin, Springer Verlag, 1976.
,[7] 6-torsion and hyperbolic volume, Proc. Amer. Math. Soc., 117 (1993), 727-735. | MR | Zbl
and ,[8] Arithmeticity, discreteness and volume, Trans. Amer. Math. Soc., 349 (1997), 3611-3643. | Zbl
, , and ,[9] Minimal index torsion-free subgroups of Kleinian groups, Math. Ann., 310 (1998), 235-250. | MR | Zbl
and ,[10] Petits discriminants des corps de nombres. In J. Armitage, editor, Number Theory Days, 1980 (Exeter 1980). London Math. Soc. Lecture Notes Ser. 56, Cambridge: Cambridge Univ. Press, 1982. | MR | Zbl
,[11] Trees, Springer Verlag, Berlin, 1980. | MR | Zbl
,[12] Introduction to Cyclotomic Fields, Springer Verlag, Berlin, 1982. | MR | Zbl
,[13] Arithmétique des algèbres de Quaternions, Lecture Notes in Math. 800, Springer Verlag, Berlin, 1980. | MR | Zbl
,Cité par Sources :