p-adic measures attached to Siegel modular forms
Annales de l'Institut Fourier, Tome 50 (2000) no. 5, pp. 1375-1443.

On étudie les valeurs critiques de la fonction L complexe standard, associée à une forme modulaire de Siegel holomorphe et des fonctions L tordues des caractères de Dirichlet. Notre objet principal est, pour un nombre premier rationnel p donné, l’interpolation p-adique des valeurs critiques essentiellement algébriques en laissant varier les caractères de Dirichlet afin d’obtenir un contrôle systématique des dénominateurs des valeurs critiques par des congruences de Kummer généralisées. Pour organiser cette information on montre l’existence de mesures p-adiques telles que l’intégration d’un caractère de Dirichlet de conducteur une p-puissance sur la mesure, donne la valeur critique normalisée de la fonction L complexe tordue du caractère de Dirichlet. D’une manière standard les mesures p-adiques définissent des fonctions Lp-adiques qui par conséquent interpolent p-adiquement les valeurs critiques normalisées.

We study the critical values of the complex standard-L-function attached to a holomorphic Siegel modular form and of the twists of the L-function by Dirichlet characters. Our main object is for a fixed rational prime number p to interpolate p-adically the essentially algebraic critical L-values as the Dirichlet character varies thus providing a systematic control of denominators of critical values by generalized Kummer congruences. In order to organize this information we prove the existence of p-adic measures such that integration of any Dirichlet character of p-power conductor over the measure yields the suitably normalized critical value of the complex L-function twisted by the Dirichlet character. In a standard manner the p-adic measures naturally define p-adic L-functions which hence p-adically interpolate the normalized critical values.

@article{AIF_2000__50_5_1375_0,
     author = {B\"ocherer, Siegfried and Schmidt, Claus-G\"unther},
     title = {$p$-adic measures attached to {Siegel} modular forms},
     journal = {Annales de l'Institut Fourier},
     pages = {1375--1443},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {50},
     number = {5},
     year = {2000},
     doi = {10.5802/aif.1796},
     mrnumber = {2001k:11082},
     zbl = {0962.11023},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1796/}
}
TY  - JOUR
AU  - Böcherer, Siegfried
AU  - Schmidt, Claus-Günther
TI  - $p$-adic measures attached to Siegel modular forms
JO  - Annales de l'Institut Fourier
PY  - 2000
SP  - 1375
EP  - 1443
VL  - 50
IS  - 5
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1796/
DO  - 10.5802/aif.1796
LA  - en
ID  - AIF_2000__50_5_1375_0
ER  - 
%0 Journal Article
%A Böcherer, Siegfried
%A Schmidt, Claus-Günther
%T $p$-adic measures attached to Siegel modular forms
%J Annales de l'Institut Fourier
%D 2000
%P 1375-1443
%V 50
%N 5
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1796/
%R 10.5802/aif.1796
%G en
%F AIF_2000__50_5_1375_0
Böcherer, Siegfried; Schmidt, Claus-Günther. $p$-adic measures attached to Siegel modular forms. Annales de l'Institut Fourier, Tome 50 (2000) no. 5, pp. 1375-1443. doi : 10.5802/aif.1796. http://www.numdam.org/articles/10.5802/aif.1796/

[1] A.N. Andrianov, V.L. Kalinin, On the analytic properties of standard zeta functions of Siegel modular forms, Math. USSR Sbornik, 35 (1979), 1-17. | Zbl

[2] A.N. Andrianov, Quadratic Forms and Hecke Operators. Grundlehren der mathematischen Wissenschaften 286, Berlin-Heidelberg-New York, Springer, 1987. | Zbl

[3] S. Böcherer, Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen, Math.Z., 183 (1983), 21-43. | Zbl

[4] S. Böcherer, Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen II, Math.Z., 189 (1985), 81-100. | Zbl

[5] S. Böcherer, Über die Fourierkoeffizienten Siegelscher Eisensteinreihen, Manuscripta Math., 45 (1984), 273-288. | Zbl

[6] S. Böcherer, Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. reine angew. Math., 362 (1985), 146-168. | Zbl

[7] S. Böcherer, Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 35-47. | Zbl

[8] U. Christian, Selberg's Zeta-, L-, and Eisenstein Series. Lecture Notes in Math. 1030. Berlin-Heidelberg-New York, Springer, 1983. | MR | Zbl

[9] U. Christian, Maaßsche L-Reihen und eine Identität für Gaußsche Summen, Abh. Math. Sem. Univ. Hamburg, 54 (1984), 163-175. | MR | Zbl

[10] P. Deligne, Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33, Part 2 (1979), 313-346. | MR | Zbl

[11] P. Feit, Poles and residues of Eisenstein series for symplectic and unitary groups, Memoirs AMS, 61 (1986), no 346. | MR | Zbl

[12] E. Freitag, Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254, Berlin-Heidelberg-New York, 1983. | MR | Zbl

[13] P.B. Garrett, M. Harris, Special values of triple product L-functions, Amer. J. Math., 115 (1993), 159-238. | MR | Zbl

[14] S. Gelbart, I. Piatetski-Shapiro, S. Rallis, Explicit Constructions of Automorphic L-Functions. Springer Lecture Notes in Math. 1254, Berlin-Heidelberg-New York, Springer, 1987. | MR | Zbl

[15] M. Harris, Special values of zeta functions attached to Siegel modular forms, Ann Sci. Ecole Norm. Sup., 14 (1981), 77-120. | Numdam | MR | Zbl

[16] L.K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monographs 6, AMS 1963. | Zbl

[17] Y. Kitaoka, Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73-84. | MR | Zbl

[18] H. Maaß, Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Berlin-Heidelberg-New York, Springer, 1971. | MR | Zbl

[19] Sh.-I. Mizumoto, Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann., 289 (1991), 589-612. | MR | Zbl

[20] A.A. Panchishkin, Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms. Springer Lecture Notes in Math. 1471, Berlin-Heidelberg-New York, Springer, 1991. | MR | Zbl

[21] A.A. Panchishkin, Admissible Non-Archimedean Standard Zeta Functions associated with Siegel Modular Forms, Proc. Symp. Pure Math., 55, Part 2, 251-292. | MR | Zbl

[22] I. Piatetski-Shapiro, S. Rallis, A new way to get Euler products, J. reine angew. Math., 392 (1988), 110-124. | MR | Zbl

[23] C.G. Schmidt, P-adic measures attached to automorphic representations of G1(3), Invent. Math., 92 (1988), 597-631. | MR | Zbl

[24] G. Shimura, On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Göttingen, 1975, 261-268. | MR | Zbl

[25] G. Shimura, The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., XXIX (1976), 783-804. | MR | Zbl

[26] G. Shimura, Arithmetic of differential operators on symmetric domains, Duke Math. J., 48 (1981), 813-843. | MR | Zbl

[27] G. Shimura—, Confluent hypergeometric functions on tube domains, Math. Ann., 269 (1982), 269-302. | MR | Zbl

[28] G. Shimura, On Eisenstein Series, Duke Math. J., 50 (1983), 417-476. | MR | Zbl

[29] G. Shimura, On differential operators attached to certain representations of classical groups, Invent. Math., 77 (1984), 463-488. | MR | Zbl

[30] G. Shimura, Differential operators and the singular values of Eisenstein series, Duke Math. J., 51 (1984), 261-329. | MR | Zbl

[31] G. Shimura, On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281-314. | MR | Zbl

[32] G. Shimura, On a class of nearly holomorphic automorphic forms, Annals of Math., 123 (1986), 347-406. | MR | Zbl

[33] G. Shimura, Nearly holomorphic functions on hermitian symmetric spaces, Math. Ann., 278 (1987), 1-28. | MR | Zbl

[34] G. Shimura, Invariant differential operators on hermitian symmetric spaces, Annals of Math., 132 (1990), 237-272. | MR | Zbl

[35] G. Shimura, Differential Operators, Holomorphic Projection, and Singular Forms, Duke Math. J., 76 (1994), 141-173. | MR | Zbl

[36] J. Sturm, The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48 (1981), 327-350. | MR | Zbl

[37] T. Tamagawa, On the zeta functions of a division algebra, Annals of Math., 77 (1963), 387-405. | MR | Zbl

[38] L. Washington, Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Berlin-Heidelberg-New York, Springer, 1982. | MR | Zbl

  • Kaplan, Eyal Doubling constructions and tensor product L-functions: coverings of the symplectic group, Forum of Mathematics, Sigma, Volume 13 (2025) | DOI:10.1017/fms.2024.63
  • Ibukiyama, Tomoyoshi; Katsurada, Hidenori; Kojima, Hisashi Period of the Ikeda-Miyawaki lift, Journal of Number Theory, Volume 269 (2025), p. 341 | DOI:10.1016/j.jnt.2024.09.014
  • Bouganis, Thanasis; Jin, Yubo Algebraicity of L-values attached to quaternionic modular forms, Canadian Journal of Mathematics, Volume 76 (2024) no. 2, p. 638 | DOI:10.4153/s0008414x23000184
  • Eischen, Ellen E.; Liu, Zheng Archimedean zeta integrals for unitary groups, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 0 (2024) no. 0 | DOI:10.1515/crelle-2024-0035
  • ATOBE, Hiraku; CHIDA, Masataka; IBUKIYAMA, Tomoyoshi; KATSURADA, Hidenori; YAMAUCHI, Takuya Harder's conjecture I, Journal of the Mathematical Society of Japan, Volume 75 (2023) no. 4 | DOI:10.2969/jmsj/87988798
  • Tilouine, Jacques; Urban, Eric Integral period relations and congruences, Algebra Number Theory, Volume 16 (2022) no. 3, p. 647 | DOI:10.2140/ant.2022.16.647
  • Cai, Yuanqing; Friedberg, Solomon; Kaplan, Eyal The generalized doubling method: local theory, Geometric and Functional Analysis, Volume 32 (2022) no. 6, p. 1233 | DOI:10.1007/s00039-022-00609-4
  • Gunji, Keiichi On the Fourier coefficients of Siegel–Eisenstein series of degree 2 for odd level, The Ramanujan Journal, Volume 59 (2022) no. 2, p. 479 | DOI:10.1007/s11139-022-00553-9
  • Horinaga, Shuji; Pitale, Ameya; Saha, Abhishek; Schmidt, Ralf The special values of the standard 𝐿-functions for 𝐺𝑆𝑝_2𝑛×𝐺𝐿₁, Transactions of the American Mathematical Society, Volume 375 (2022) no. 10, p. 6947 | DOI:10.1090/tran/8617
  • Pitale, Ameya; Saha, Abhishek; Schmidt, Ralf On the standard L-function for GSp2n×GL1 and algebraicity of symmetric fourth L-values for GL2, Annales mathématiques du Québec, Volume 45 (2021) no. 1, p. 113 | DOI:10.1007/s40316-020-00134-6
  • Pitale, Ameya; Saha, Abhishek; Schmidt, Ralf Lowest weight modules of Sp4(R) and nearly holomorphic Siegel modular forms, Kyoto Journal of Mathematics, Volume 61 (2021) no. 4 | DOI:10.1215/21562261-2021-0012
  • Morimoto, Kazuki On algebraicity of special values of symmetric 4-th and 6-th power L-functions for GL(2), Mathematische Zeitschrift, Volume 299 (2021) no. 3-4, p. 1331 | DOI:10.1007/s00209-021-02727-5
  • Liu, Zheng Ordinary families of Klingen Eisenstein series on symplectic groups, Transactions of the American Mathematical Society, Volume 374 (2021) no. 5, p. 3331 | DOI:10.1090/tran/8270
  • Liu, Zheng -ADIC -FUNCTIONS FOR ORDINARY FAMILIES ON SYMPLECTIC GROUPS, Journal of the Institute of Mathematics of Jussieu, Volume 19 (2020) no. 4, p. 1287 | DOI:10.1017/s1474748018000415
  • Mercuri, Salvatore p‐adic L‐functions on metaplectic groups, Journal of the London Mathematical Society, Volume 102 (2020) no. 1, p. 229 | DOI:10.1112/jlms.12318
  • Liu, Zheng; Rosso, Giovanni Non-cuspidal Hida theory for Siegel modular forms and trivial zeros of p-adic L-functions, Mathematische Annalen, Volume 378 (2020) no. 1-2, p. 153 | DOI:10.1007/s00208-020-01966-x
  • BERGER, TOBIAS; KLOSIN, KRZYSZTOF Ap-ADIC HERMITIAN MAASS LIFT, Glasgow Mathematical Journal, Volume 61 (2019) no. 1, p. 85 | DOI:10.1017/s0017089518000071
  • Cai, Yuanqing; Friedberg, Solomon; Ginzburg, David; Kaplan, Eyal Doubling constructions and tensor product L-functions: the linear case, Inventiones mathematicae, Volume 217 (2019) no. 3, p. 985 | DOI:10.1007/s00222-019-00883-4
  • Rosso, Giovanni Derivative of the standard 𝑝-adic 𝐿-function associated with a Siegel form, Transactions of the American Mathematical Society, Volume 370 (2018) no. 9, p. 6469 | DOI:10.1090/tran/7138
  • Böcherer, Siegfried On Denominators of Values of Certain L-Functions When Twisted by Characters, L-Functions and Automorphic Forms, Volume 10 (2017), p. 25 | DOI:10.1007/978-3-319-69712-3_3
  • Do, Anh Tuan p-Adic Admissible Measures Attached to Siegel Modular Forms of Arbitrary Genus, Vietnam Journal of Mathematics, Volume 45 (2017) no. 4, p. 695 | DOI:10.1007/s10013-017-0247-x
  • Panchishkin, Alexei Arithmetical modular forms and new constructions ofp-adicL-functions on classical groups, Annales de la Faculté des sciences de Toulouse : Mathématiques, Volume 25 (2016) no. 2-3, p. 543 | DOI:10.5802/afst.1504
  • Bouganis, Thanasis p-adic Measures for Hermitian Modular Forms and the Rankin–Selberg Method, Elliptic Curves, Modular Forms and Iwasawa Theory, Volume 188 (2016), p. 33 | DOI:10.1007/978-3-319-45032-2_2
  • GUNJI, Keiichi On the Siegel Eisenstein series of degree two for low weights, Journal of the Mathematical Society of Japan, Volume 67 (2015) no. 3 | DOI:10.2969/jmsj/06731043
  • Bouganis, Thanasis On Special L-Values Attached to Siegel Modular Forms, Iwasawa Theory 2012, Volume 7 (2014), p. 135 | DOI:10.1007/978-3-642-55245-8_4
  • IBUKIYAMA, Tomoyoshi; KATSURADA, Hidenori Exact critical values of the symmetric fourth L function and vector valued Siegel modular forms, Journal of the Mathematical Society of Japan, Volume 66 (2014) no. 1 | DOI:10.2969/jmsj/06610139
  • Panchishkin, Alexei On zeta functions and families of Siegel modular forms, Journal of Mathematical Sciences, Volume 180 (2012) no. 5, p. 626 | DOI:10.1007/s10958-012-0661-2
  • BÖCHERER, Siegfried; DUMMIGAN, Neil; SCHULZE-PILLOT, Rainer Yoshida lifts and Selmer groups, Journal of the Mathematical Society of Japan, Volume 64 (2012) no. 4 | DOI:10.2969/jmsj/06441353
  • Panchishkin, Alexei Families of Siegel modular forms, L-functions and modularity lifting conjectures, Israel Journal of Mathematics, Volume 185 (2011) no. 1, p. 343 | DOI:10.1007/s11856-011-0113-6
  • Dummigan, Neil; Ibukiyama, Tomoyoshi; Katsurada, Hidenori Some Siegel modular standard L-values, and Shafarevich–Tate groups, Journal of Number Theory, Volume 131 (2011) no. 7, p. 1296 | DOI:10.1016/j.jnt.2011.01.012
  • Katsurada, Hidenori A remark on the normalization of the standard zeta values for Siegel modular forms, Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, Volume 80 (2010) no. 1, p. 37 | DOI:10.1007/s12188-010-0035-y
  • Panchishkin, A. A. Triple products of Coleman’s families, Journal of Mathematical Sciences, Volume 149 (2008) no. 3, p. 1246 | DOI:10.1007/s10958-008-0063-7
  • Katsurada, Hidenori Congruence of Siegel modular forms and special values of their standard zeta functions, Mathematische Zeitschrift, Volume 259 (2008) no. 1, p. 97 | DOI:10.1007/s00209-007-0213-5
  • Katsurada, Hidenori Special Values of the Standard Zeta Functions, Galois Theory and Modular Forms, Volume 11 (2004), p. 337 | DOI:10.1007/978-1-4613-0249-0_18
  • Katsurada, H.; Nagaoka, S. On some p-adic properties of Siegel–Eisenstein series, Journal of Number Theory, Volume 104 (2004) no. 1, p. 100 | DOI:10.1016/s0022-314x(03)00160-4
  • B�cherer, S.; Chiera, F.L. Petersson Products of Singular and Almost Singular Theta Series, manuscripta mathematica, Volume 115 (2004) no. 3, p. 281 | DOI:10.1007/s00229-004-0500-y
  • Panchishkin, A.A. Two variable p-adic L functions attached to eigenfamilies of positive slope, Inventiones mathematicae, Volume 154 (2003) no. 3, p. 551 | DOI:10.1007/s00222-003-0309-4

Cité par 37 documents. Sources : Crossref