On étudie les valeurs critiques de la fonction
We study the critical values of the complex standard-
@article{AIF_2000__50_5_1375_0, author = {B\"ocherer, Siegfried and Schmidt, Claus-G\"unther}, title = {$p$-adic measures attached to {Siegel} modular forms}, journal = {Annales de l'Institut Fourier}, pages = {1375--1443}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {5}, year = {2000}, doi = {10.5802/aif.1796}, mrnumber = {2001k:11082}, zbl = {0962.11023}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1796/} }
TY - JOUR AU - Böcherer, Siegfried AU - Schmidt, Claus-Günther TI - $p$-adic measures attached to Siegel modular forms JO - Annales de l'Institut Fourier PY - 2000 SP - 1375 EP - 1443 VL - 50 IS - 5 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1796/ DO - 10.5802/aif.1796 LA - en ID - AIF_2000__50_5_1375_0 ER -
%0 Journal Article %A Böcherer, Siegfried %A Schmidt, Claus-Günther %T $p$-adic measures attached to Siegel modular forms %J Annales de l'Institut Fourier %D 2000 %P 1375-1443 %V 50 %N 5 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1796/ %R 10.5802/aif.1796 %G en %F AIF_2000__50_5_1375_0
Böcherer, Siegfried; Schmidt, Claus-Günther. $p$-adic measures attached to Siegel modular forms. Annales de l'Institut Fourier, Tome 50 (2000) no. 5, pp. 1375-1443. doi : 10.5802/aif.1796. http://www.numdam.org/articles/10.5802/aif.1796/
[1] On the analytic properties of standard zeta functions of Siegel modular forms, Math. USSR Sbornik, 35 (1979), 1-17. | Zbl
, ,[2] Quadratic Forms and Hecke Operators. Grundlehren der mathematischen Wissenschaften 286, Berlin-Heidelberg-New York, Springer, 1987. | Zbl
,[3] Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen, Math.Z., 183 (1983), 21-43. | Zbl
,[4] Über die Fourier-Jacobi-Entwicklung der Siegelschen Eisensteinreihen II, Math.Z., 189 (1985), 81-100. | Zbl
,[5] Über die Fourierkoeffizienten Siegelscher Eisensteinreihen, Manuscripta Math., 45 (1984), 273-288. | Zbl
,[6] Über die Funktionalgleichung automorpher L-Funktionen zur Siegelschen Modulgruppe, J. reine angew. Math., 362 (1985), 146-168. | Zbl
,[7] Ein Rationalitätssatz für formale Heckereihen zur Siegelschen Modulgruppe, Abh. Math. Sem. Univ. Hamburg, 56 (1986), 35-47. | Zbl
,[8] Selberg's Zeta-, L-, and Eisenstein Series. Lecture Notes in Math. 1030. Berlin-Heidelberg-New York, Springer, 1983. | MR | Zbl
,[9] Maaßsche L-Reihen und eine Identität für Gaußsche Summen, Abh. Math. Sem. Univ. Hamburg, 54 (1984), 163-175. | MR | Zbl
,[10] Valeurs de fonctions L et périodes d'intégrales, Proc. Symp. Pure Math., 33, Part 2 (1979), 313-346. | MR | Zbl
,[11] Poles and residues of Eisenstein series for symplectic and unitary groups, Memoirs AMS, 61 (1986), no 346. | MR | Zbl
,[12] Siegelsche Modulfunktionen. Grundlehren der mathematischen Wissenschaften 254, Berlin-Heidelberg-New York, 1983. | MR | Zbl
,[13] Special values of triple product L-functions, Amer. J. Math., 115 (1993), 159-238. | MR | Zbl
, ,[14] Explicit Constructions of Automorphic L-Functions. Springer Lecture Notes in Math. 1254, Berlin-Heidelberg-New York, Springer, 1987. | MR | Zbl
, , ,[15] Special values of zeta functions attached to Siegel modular forms, Ann Sci. Ecole Norm. Sup., 14 (1981), 77-120. | Numdam | MR | Zbl
,[16] Harmonic analysis of functions of several complex variables in the classical domains, Transl. Math. Monographs 6, AMS 1963. | Zbl
,[17] Dirichlet series in the theory of Siegel modular forms, Nagoya Math. J., 95 (1984), 73-84. | MR | Zbl
,[18] Siegel's modular forms and Dirichlet series, Lecture Notes in Math. 216, Berlin-Heidelberg-New York, Springer, 1971. | MR | Zbl
,[19] Poles and residues of standard L-functions attached to Siegel modular forms, Math. Ann., 289 (1991), 589-612. | MR | Zbl
,[20] Non-Archimedean L-Functions of Siegel and Hilbert Modular Forms. Springer Lecture Notes in Math. 1471, Berlin-Heidelberg-New York, Springer, 1991. | MR | Zbl
,[21] Admissible Non-Archimedean Standard Zeta Functions associated with Siegel Modular Forms, Proc. Symp. Pure Math., 55, Part 2, 251-292. | MR | Zbl
,[22] A new way to get Euler products, J. reine angew. Math., 392 (1988), 110-124. | MR | Zbl
, ,[23] P-adic measures attached to automorphic representations of G1(3), Invent. Math., 92 (1988), 597-631. | MR | Zbl
,[24] On the Fourier coefficients of modular forms of several variables, Nachr. Akad. Wiss. Göttingen, 1975, 261-268. | MR | Zbl
,[25] The special values of the zeta functions associated with cusp forms, Comm. Pure Appl. Math., XXIX (1976), 783-804. | MR | Zbl
,[26] Arithmetic of differential operators on symmetric domains, Duke Math. J., 48 (1981), 813-843. | MR | Zbl
,[27] Confluent hypergeometric functions on tube domains, Math. Ann., 269 (1982), 269-302. | MR | Zbl
,[28] On Eisenstein Series, Duke Math. J., 50 (1983), 417-476. | MR | Zbl
,[29] On differential operators attached to certain representations of classical groups, Invent. Math., 77 (1984), 463-488. | MR | Zbl
,[30] Differential operators and the singular values of Eisenstein series, Duke Math. J., 51 (1984), 261-329. | MR | Zbl
,[31] On Eisenstein series of half-integral weight, Duke Math. J., 52 (1985), 281-314. | MR | Zbl
,[32] On a class of nearly holomorphic automorphic forms, Annals of Math., 123 (1986), 347-406. | MR | Zbl
,[33] Nearly holomorphic functions on hermitian symmetric spaces, Math. Ann., 278 (1987), 1-28. | MR | Zbl
,[34] Invariant differential operators on hermitian symmetric spaces, Annals of Math., 132 (1990), 237-272. | MR | Zbl
,[35] Differential Operators, Holomorphic Projection, and Singular Forms, Duke Math. J., 76 (1994), 141-173. | MR | Zbl
,[36] The critical values of zeta functions associated to the symplectic group, Duke Math. J., 48 (1981), 327-350. | MR | Zbl
,[37] On the zeta functions of a division algebra, Annals of Math., 77 (1963), 387-405. | MR | Zbl
,[38] Introduction to Cyclotomic Fields, Graduate Texts in Math. 83, Berlin-Heidelberg-New York, Springer, 1982. | MR | Zbl
,Cité par Sources :