Nous développons un formalisme d’images directes pour les fibrés hermitiens dans le contexte de la théorie d’Arakelov non-archimédienne que nous avons introduite avec S. Bloch. Nous montrons un théorème de Riemann-Roch-Grothendieck pour cette image directe.
We develop a formalism of direct images for metrized vector bundles in the context of the non-archimedean Arakelov theory introduced in our joint work with S. Bloch. We prove a Riemann-Roch-Grothendieck theorem for this direct image.
@article{AIF_2000__50_2_363_0, author = {Gillet, Henri and Soul\'e, Christophe}, title = {Direct images in non-archimedean {Arakelov} theory}, journal = {Annales de l'Institut Fourier}, pages = {363--399}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {50}, number = {2}, year = {2000}, doi = {10.5802/aif.1758}, mrnumber = {2001j:14036}, zbl = {0969.14015}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1758/} }
TY - JOUR AU - Gillet, Henri AU - Soulé, Christophe TI - Direct images in non-archimedean Arakelov theory JO - Annales de l'Institut Fourier PY - 2000 SP - 363 EP - 399 VL - 50 IS - 2 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1758/ DO - 10.5802/aif.1758 LA - en ID - AIF_2000__50_2_363_0 ER -
%0 Journal Article %A Gillet, Henri %A Soulé, Christophe %T Direct images in non-archimedean Arakelov theory %J Annales de l'Institut Fourier %D 2000 %P 363-399 %V 50 %N 2 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1758/ %R 10.5802/aif.1758 %G en %F AIF_2000__50_2_363_0
Gillet, Henri; Soulé, Christophe. Direct images in non-archimedean Arakelov theory. Annales de l'Institut Fourier, Tome 50 (2000) no. 2, pp. 363-399. doi : 10.5802/aif.1758. http://www.numdam.org/articles/10.5802/aif.1758/
[AKMW] Torification and factorization of birational maps, preprint, 1999, math.AG/9904135. | Zbl
, , , ,[BFM] Riemann-Roch for Singular Varieties, Pub. Math. I.H.E.S., 45 (1975), 253-290. | Numdam | MR | Zbl
, , ,[BK] Higher analytic torsion forms for direct images and anomaly formulas, J. Algebr. Geom., 1, n° 4 (1992), 647-684. | MR | Zbl
, ,[BGS] Non-archimedean Arakelov theory, Journal of Algebraic Geometry, 4 (1995), 427-485. | MR | Zbl
, , ,[B] Arithmetic Chow rings and Deligne-Beilinson cohomology, J. Algebr. Geom., 6, n° 2 (1997), 335-377. | MR | Zbl
,[D] Le déterminant de la cohomologie, in : Current trends in Arithmetical Algebraic Geometry, K. A. Ribet ed., Contemporary Math., 67 (1987), 93-178. | MR | Zbl
,[F] Intersection theory, Ergebnisse der Math., 3, Folge 2 Band 2, Springer-Verlag, Berlin-Heidelberg-New York, 1984. | MR | Zbl
,[Fr] Riemann-Roch in functorial form, preprint, 78 pp., 1992.
,[GS1] Arithmetic Intersection Theory, Publications Math. IHES, 72 (1990), 94-174. | Numdam | MR | Zbl
, ,[GS2] Characteristic classes for algebraic vector bundles with hermitian metric, Annals of Math., 131 (1990), 163-203. | MR | Zbl
, ,[GS3] Analytic torsion and the Arithmetic Todd genus, Topology, 30, 1 (1991), 21-54. | MR | Zbl
, ,[GS4] An arithmetic Riemann-Roch theorem, Inventiones Math., 110 (1992), 474-543. | MR | Zbl
, ,[H] Resolution of singularities of an algebraic variety over a field of characteristic zero, Annals of Math., 79 (1964), 109-326. | MR | Zbl
,[KM] The projectivity of the moduli space of stable curves, I: Preliminaries on “det” and “div”, Math. Scand., 39 (1976), 19-55. | MR | Zbl
, ,[M] Commutative ring theory, Transl. from the Japanese by M. Reid, Cambridge Studies in Advanced Mathematics, 8, Cambridge University Press, 1989. | Zbl
,[Q] Determinants of Cauchy-Riemann operators over a Riemann surface, Funct. Anal. Appl., (1985), 31-34. | MR | Zbl
,[RG] Critères de platitude et de projectivité, Inv. Math., 13 (1971), 1-89. | Zbl
, ,[S] Conductor, discriminant, and the Noether formula of arithmetic surfaces, Duke Math. Journal, 57 (1988), 151-173. | MR | Zbl
,[SGA4] Séminaire de géométrie algébrique du Bois-Marie 1963-1964, Théorie des topos et cohomologie étale des schémas, SGA 4, Tome 3, Exposés IX a XIX, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 305 (1973). | MR | Zbl
, , , , ,[SGA6] Séminaire de géométrie algébrique du Bois Marie 1966/67, SGA 6, Théorie des intersections et théorème de Riemann-Roch, Lecture Notes in Mathematics, Berlin-Heidelberg-New York, Springer-Verlag, 225 (1971). | Zbl
, , ,[W] Combinatorial structures on toroidal varieties and a proof of the weak factorization theorem preprint, 1999, math.AG/9904076.
,[Z] A general Arithmetic Riemann-Roch theorem, PHD thesis, Chicago University, 1998.
,Cité par Sources :