Soit un groupe de Lie connexe compact. Pour un domaine , -invariant et relativement compact dans un espace homogène de Stein , nous montrons que le groupe des automorphismes de est compact et si est semi-simple, une application holomorphe propre de est biholomorphe.
Given a compact connected Lie group . For a relatively compact -invariant domain in a Stein -homogeneous space, we prove that the automorphism group of is compact and if is semisimple, a proper holomorphic self mapping of is biholomorphic.
@article{AIF_1997__47_4_1101_0, author = {Zhou, Xiang-Yu}, title = {On invariant domains in certain complex homogeneous spaces}, journal = {Annales de l'Institut Fourier}, pages = {1101--1115}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {4}, year = {1997}, doi = {10.5802/aif.1593}, mrnumber = {99a:32045}, zbl = {0881.32015}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1593/} }
TY - JOUR AU - Zhou, Xiang-Yu TI - On invariant domains in certain complex homogeneous spaces JO - Annales de l'Institut Fourier PY - 1997 SP - 1101 EP - 1115 VL - 47 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1593/ DO - 10.5802/aif.1593 LA - en ID - AIF_1997__47_4_1101_0 ER -
%0 Journal Article %A Zhou, Xiang-Yu %T On invariant domains in certain complex homogeneous spaces %J Annales de l'Institut Fourier %D 1997 %P 1101-1115 %V 47 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1593/ %R 10.5802/aif.1593 %G en %F AIF_1997__47_4_1101_0
Zhou, Xiang-Yu. On invariant domains in certain complex homogeneous spaces. Annales de l'Institut Fourier, Tome 47 (1997) no. 4, pp. 1101-1115. doi : 10.5802/aif.1593. http://www.numdam.org/articles/10.5802/aif.1593/
[1] The Lefschetz theorem on hyperplane sections, Ann. of Math., 69 (1959), 713-717. | MR | Zbl
, ,[2] Plurisubharmonic functions and the Kempf-Ness theorem, Bull. London Math. Soc., 25 (1993), 162-168. | MR | Zbl
, ,[3] Proper holomorphic mappings, Bull. Amer. Math. Soc., 10 (1984), 157-175. | MR | Zbl
,[4] On the automorphism group of a Stein manifold, Math. Ann., 266 (1983), 215-227. | MR | Zbl
,[5] Symmetric compact complex spaces, Arch. Math., 33 (1979), 49-56. | MR | Zbl
,[6] Differential forms in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1982. | MR | Zbl
, ,[7] Invariant domains in complex symmetric spaces, J. reine angew. Math., 454 (1994), 97-118. | MR | Zbl
, ,[8] Proper holomorphic mappings. A survey, in Proceedings of the special year on several complex variables at Mittag-Leffler Institute, E. Fornaess ed., Princeton University Press, Princeton, 1993. | MR | Zbl
,[9] Analytische Faserungen über holomorph-vollständigen Räumen, Math. Ann., 135 (1958), 263-273. | MR | Zbl
,[10] Connections, curvature, and cohomology, Academic Press, New York, London, 1972. | MR | Zbl
, , ,[11] Geometric invariant theory on Stein space, Math. Ann., 289 (1991), 631-662. | EuDML | MR | Zbl
,[12] Equivariant holomorphic extensions of real analytic manifolds, Bull. Soc. Math. France., 121 (1993), 445-463. | EuDML | Numdam | MR | Zbl
,[13] Invariant plurisubharmonic exhaustions and retractions, Manu. Math., 83 (1994), 19-29. | EuDML | MR | Zbl
, ,[14] An equivariant version of Grauert's Oka principle, Invent. Math., 119 (1995), 317-346. | EuDML | MR | Zbl
, ,[15] Differential topology, Springer-Verlag, New York, Heidelberg, Berlin, 1976. | MR | Zbl
,[16] Topological methods in algebraic geometry, Springer-Verlag, New York, Heidelberg, Berlin, 1966. | MR | Zbl
,[17] An introduction to complex analysis in several variables, North-Holland, Amsterdam, 1966. | Zbl
,[18] Fibre bundles, McGraw-Hill, New York et al., 1966. | MR | Zbl
,[19] Holomorphic functions of several variables, Walter de Gruyter, Berlin, New York, 1983. | MR | Zbl
, ,[20] Intrinsic distances, measures, and geometric function theory, Bull. Amer. Math. Soc., 82 (1976), 357-416. | MR | Zbl
,[21] Geomtrische Methoden in der Invariantentheri, Braunschweig-Wiesbaden, Vieweg, 1985. | MR | Zbl
,[22] Séries de Laurent des functions holomorphes dans la complexification d'un espace symétrique compact, Ann. Scient. Éc. Norm. Sup., 11 (1978), 167-210. | EuDML | Numdam | MR | Zbl
,[23] A basic course in algebraic topology, Springer-Verlag, New York, Heidelberg, Berlin, 1991. | MR | Zbl
,[24] On spaces having the homotopy type of a CW-complex, Trans. Amer. Math. Soc., 90 (1959), 272-280. | MR | Zbl
,[25] Rigiditity of holomorphic self-mappings and the automorphism groups of hyperbolic Stein spaces, Math. Ann., 266 (1984), 433-447. | EuDML | MR | Zbl
,[26] On the homology group of Stein spaces, Invent. Math., 2 (1967), 377-385. | EuDML | MR | Zbl
,[27] Several complex variables, University of Chicago, Chicago, 1971. | MR | Zbl
,[28] Topology of transitive transformation groups, Fizmatlit Publishing Company, Moscow, 1994 (Russian). | MR | Zbl
,[29] On proper holomorphic mappings of strictly psedoconvex domains, Siberian Math. J., 15 (1974), 909-917 (Russian). | MR | Zbl
,[30] Eigentlische holomorphe Abbildungen, Math. Z., 73 (1960), 159-189. | EuDML | MR | Zbl
, ,[31] Topology of fibre bundles, Princeton University Press, Princeton, 1951. | MR | Zbl
,[32] Lie groups, Lie algebras, and their representations, Springer-Verlag, New York, Heidelberg, Berlin, 1984. | MR | Zbl
,[33] Spaces of constant curvature, Publish or Perish, Boston, 1974. | MR | Zbl
,[34] On orbit connectedness, orbit convexity, and envelopes of holomorphy, Izvestija RAN., Ser. Math., 58 (1994), 196-205. | MR | Zbl
,Cité par Sources :