Les transformations de contact quantifiées sont des opérateurs unitaires de Toeplitz de la forme sur une variété de contact. Ici, est un projecteur de Szegö, est une transformation de contact, et est un opérateur pseudodifférentiel sur . On peut quantifier une transformation symplectique sur une variété symplectique de cette façon lorsque se relève en une transformation de contact sur le fibré “pré-quantique” en cercles . On montre que les automorphismes symplectiques d’un tore sont de ce type : le fibré est alors le quotient du groupe de Heisenberg par son réseau entier , le projecteur est le noyau de Szegö, et, à une constante près, définit une des lois de transformation de Hermite–Jacobi sur les fonctions thêta. Il en résulte que les applications quantiques du chat (telles qu’elles sont connues dans la littérature physique) ne sont autres que l’action métaplectique du groupe de thêta sur les fonctions thêta. Il résulte aussi que les indices de ces applications symplectiques sont nuls. On donne par ailleurs des résultats généraux sur l’ergodicité quantique des transformations de contact quantifiées, c’est-à-dire, sur les propriétés asymptotiques des valeurs et fonctions propres de .
Quantized contact transformations are Toeplitz operators over a contact manifold of the form , where is a Szegö projector, where is a contact transformation and where is a pseudodifferential operator over . They provide a flexible alternative to the Kähler quantization of symplectic maps, and encompass many of the examples in the physics literature, e.g. quantized cat maps and kicked rotors. The index problem is to determine when the principal symbol is unitary, or equivalently to determine whether can be chosen so that is unitary. We show that the answer is yes in the case of quantized symplectic torus automorphisms —by showing that duplicates the classical transformation laws on theta functions. Using the Cauchy-Szegö kernel on the Heisenberg group, we calculate the traces on theta functions of each degree . We also study the quantum dynamics generated by a general q.c.t. , i.e. the quasi-classical asymptotics of the eigenvalues and eigenfunctions under various ergodicity and mixing hypotheses on Our principal results are proofs of equidistribution of eigenfunctions and weak mixing properties of matrix elements for quantizations of mixing symplectic maps.
@article{AIF_1997__47_1_305_0, author = {Zelditch, Steven}, title = {Index and dynamics of quantized contact transformations}, journal = {Annales de l'Institut Fourier}, pages = {305--363}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {47}, number = {1}, year = {1997}, doi = {10.5802/aif.1568}, mrnumber = {99a:58082}, zbl = {0865.47018}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1568/} }
TY - JOUR AU - Zelditch, Steven TI - Index and dynamics of quantized contact transformations JO - Annales de l'Institut Fourier PY - 1997 SP - 305 EP - 363 VL - 47 IS - 1 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1568/ DO - 10.5802/aif.1568 LA - en ID - AIF_1997__47_1_305_0 ER -
%0 Journal Article %A Zelditch, Steven %T Index and dynamics of quantized contact transformations %J Annales de l'Institut Fourier %D 1997 %P 305-363 %V 47 %N 1 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1568/ %R 10.5802/aif.1568 %G en %F AIF_1997__47_1_305_0
Zelditch, Steven. Index and dynamics of quantized contact transformations. Annales de l'Institut Fourier, Tome 47 (1997) no. 1, pp. 305-363. doi : 10.5802/aif.1568. http://www.numdam.org/articles/10.5802/aif.1568/
[At] The Geometry and Physics of Knots, Lezioni Lincee, Cambridge Univ. Press, 1990. | MR | Zbl
,[AT] Is computing with the finite Fourier transform pure or applied mathematics, Bull. AMS, 1 (1979), 847-897. | MR | Zbl
and ,[A] Lecture Notes on Nil-theta Functions, CBMS series no. 34, AMS Publications (1977). | MR | Zbl
,[AdPW] Geometric quantization of the Chern-Simons gauge theory, J.D.G., 33 (1991), 787-902. | MR | Zbl
, , and ,[Bai] Classical theory of θ-functions, in AMS Proc.Symp.Pure. Math. IX, AMS (1966), 306-311. | MR | Zbl
,[B] Deterministic Chaos in Infinite Quantum Systems, Trieste Notes in Physics, Springer-Verlag (1993).
,[BNS] A non-commutative version of the Arnold cat map, Lett. Math. Phys., 21 (1991), 157-172. | MR | Zbl
, , and ,[BPU] Legendrian distributions with applications to relative Poincaré series, Invent. Math., 122 (1995), 359-402. | EuDML | MR | Zbl
, , ,[B] Toeplitz operators—an asymptotic quantization of symplectic cones, in : Stochastic Processes and Their Applications, S. Albeverio (Ed.), Kluwer Acad. Pub. Netherlands, 1990. | MR | Zbl
,[BG] The Spectral Theory of Toeplitz Operators, Ann. Math. Studies 99, Princeton U. Press (1981). | MR | Zbl
and ,[BS] Sur la singularité des noyaux de Bergmann et de Szegö, Astérisque 34-35, (1976), 123-164. | Numdam | Zbl
and ,[BdB] Equipartition of the eigenfunctions of quantized ergodic maps on the torus, to appear in Comm.Math.Phys. | Zbl
and ,[BR] Operator Algebras and Quantum Statistical Mechanics I, Springer-Verlay, 1979. | MR | Zbl
and ,[C] Quantum mechanical commutation relations and theta functions, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. AMS (1966). | MR | Zbl
,[CV] Ergodicité et functions propres du Laplacian, Comm. Math. Phys., 102 (1985), 497-502. | MR | Zbl
,[D] Coherent states and projective representations of the linear canonical transformations, J. Math. Phys., 21 (1980), 1377-1389. | MR | Zbl
,[dEGI] Stochastic properties of the quantum Arnold cat in the classical limit, Comm. Math. Phys., 167 (1995), 471-509.
, , and ,[Do] C*-Algebra Extensions and K-Homology, Ann. Math. Studies no. 95, Princeton Univ. Press, Princeton, 1980. | MR | Zbl
,[F] Harmonic Analysis in Phase Space, Ann. Math. Studies, no. 122, Princeton Univ. Press, 1989. | MR | Zbl
,[FS] Estimates for the ∂b complex and analysis on the Heisenberg group, Comm. P.A.M., 27 (1974), 429-522. | MR | Zbl
and ,[G1] Residue traces for certain algebras of Fourier Integral operators, J. Fun. Anal., 115 (1993), 381-417. | MR | Zbl
,[G2] A non-elementary proof of quadratic reciprocity (unpublished manuscript).
,[HB] Quantization of linear maps on a torus, Physica D1 (1980), 267.
and ,[H] In : Chaos and Quantum Physics, Les Houches 1989 (ed. by M.J. Giannoni, A. Voros and J. Zinn-Justin), Amsterdam, North Holland, 1991.
,[Herm] Sur quelques formules relatives a la transformation des fonctions elliptiques, Journal de Liouville, III (1858), 26.
,[JP] On a model of quantum friction III : Ergodic properties of the spin-boson system, Comm. Math. Phys. 178 (1996), 627-651. | MR | Zbl
and ,[K] Infinite Dimensional Lie Algebras, 3rd ed. Cambridge : Cambridge Univ. Press, 1990. | Zbl
,[KP] Infinite dimensional Lie algebras, theta functions and modular forms, Adv in Math., 53 (1984), 125-264. | MR | Zbl
and ,[Ke] The cat maps : quantum mechanics and classical motion, Nonlinearity, 4 (1991), 309-341. | MR | Zbl
,[Kloo] The behaviour of general theta functions under the modular group and the characters of binary modular congruence groups. I, Ann. Math., 47 (1946), 317. | Zbl
,[M] Tata Lectures on Theta III, Progress in Math. 97, Birkhauser, Boston (1991). | MR | Zbl
,[NT1] Transitivity and ergodicity of quantum systems, J.Stat.Phys., 52 (1988), 1097-1112. | MR | Zbl
and ,[NT2] Mixing properties of quantum systems, J.Stat.Phys., 57 (1989), 811-825. | MR | Zbl
and ,[R] Statistical Mechanics, Benjamin, 1969.
,[Sn] Ergodic properties of eigenfunctions, Usp. Math. Nauk., 29 (1974), 181-182.
,[S] Harmonic Analysis, Princeton: Princeton Univ. Press, 1993.
,[Su] Quantum ergodicity, preprint 1994. | Zbl
,[Th] A Course in Mathematical Physics, vol. 4 : Quantum Mechanics of Large Systems, Springer-Verlag, New York, 1983. | Zbl
,[UZ] Spectral statistics on Zoll surfaces, Comm. Math. Phys. 154 (1993), 313-346. | MR | Zbl
and ,[W] An Introduction to Ergodic Theory, Graduate Texts in Math. 79, Springer-Verlag, NY (1982). | MR | Zbl
,[Wei] Fourier Integral Operators, quantization, and the spectrum of a Riemannian manifold, Colloques Internationaux C.N.R.S. 237, Géométrie Symplectique et Physique (1976).
,[We] Quantization via real polarization of the moduli space of flat connections and Chern-Simons gauge theory in genus one, Comm.Math.Phys., 137 (1991), 175-190. | MR | Zbl
,[Z1] Quantum ergodicity of C*-dynamical systems, (Comm.Math.Phys., 177 (1996), 507-528. | MR | Zbl
,[Z2] Quantum Mixing, J. Fun. Anal., 140 (1996), 68-86. | MR | Zbl
,[Z3] Quantum transition amplitudes for ergodic and for completely integrable systems, J. Fun. Anal., 94 (1990), 415-436. | MR | Zbl
,Cité par Sources :