Galois covers between K3 surfaces
Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 73-88.

Nous donnons une classification des actions de groupes finis sur une surface K3 ayant des quotients K3, du point de vue des points fixes. Il est montré qu’à part deux cas, chacun des groupes donne un unique type de points fixes.

We give a classification of finite group actions on a K3 surface giving rise to K3 quotients, from the point of view of their fixed points. It is shown that except two cases, each such group gives rise to a unique type of fixed point set.

@article{AIF_1996__46_1_73_0,
     author = {Xiao, Gang},
     title = {Galois covers between $K3$ surfaces},
     journal = {Annales de l'Institut Fourier},
     pages = {73--88},
     publisher = {Association des Annales de l{\textquoteright}institut Fourier},
     volume = {46},
     number = {1},
     year = {1996},
     doi = {10.5802/aif.1507},
     mrnumber = {97b:14047},
     zbl = {0845.14026},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1507/}
}
TY  - JOUR
AU  - Xiao, Gang
TI  - Galois covers between $K3$ surfaces
JO  - Annales de l'Institut Fourier
PY  - 1996
SP  - 73
EP  - 88
VL  - 46
IS  - 1
PB  - Association des Annales de l’institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1507/
DO  - 10.5802/aif.1507
LA  - en
ID  - AIF_1996__46_1_73_0
ER  - 
%0 Journal Article
%A Xiao, Gang
%T Galois covers between $K3$ surfaces
%J Annales de l'Institut Fourier
%D 1996
%P 73-88
%V 46
%N 1
%I Association des Annales de l’institut Fourier
%U http://www.numdam.org/articles/10.5802/aif.1507/
%R 10.5802/aif.1507
%G en
%F AIF_1996__46_1_73_0
Xiao, Gang. Galois covers between $K3$ surfaces. Annales de l'Institut Fourier, Tome 46 (1996) no. 1, pp. 73-88. doi : 10.5802/aif.1507. http://www.numdam.org/articles/10.5802/aif.1507/

[D] I. Dolgachev, Integral quadratic forms : applications to algebraic geometry, Seminaire Bourbaki, 611 (1983). | Numdam | MR | Zbl

[M] S. Mukai, Finite groups of automorphisms of K3 surfaces and the Mathieu group, Invent. Math., 94 (1988), 183-221. | MR | Zbl

[N] V.V. Nikulin, Finite automorphism groups of Kähler K3 surfaces, Trans. Moscow Math. Soc., 38 (1980), 71-137. | Zbl

  • Iwai, Masataka; Jiang, Chen; Liu, Haidong Miyaoka-type inequalities for terminal threefolds with nef anti-canonical divisors, Science China. Mathematics, Volume 68 (2025) no. 1, pp. 1-18 | DOI:10.1007/s11425-023-2230-6 | Zbl:7965979
  • Muller, Stevell Invariant Grassmannians and a K3 surface with an action of order 192*2, Journal of Computational Algebra, Volume 10 (2024), p. 100014 | DOI:10.1016/j.jaca.2024.100014
  • Lairez, Pierre; Pichon-Pharabod, Eric; Vanhove, Pierre Effective homology and periods of complex projective hypersurfaces, Mathematics of Computation, Volume 93 (2024) no. 350, pp. 2985-3025 | DOI:10.1090/mcom/3947 | Zbl:1546.14092
  • Beri, Pietro Double EPW sextics associated with Gushel–Mukai surfaces, Proceedings of the Royal Society of Edinburgh: Section A Mathematics (2024), p. 1 | DOI:10.1017/prm.2024.136
  • Degtyarev, Alex Conics on Barth-Bauer octics, Science China. Mathematics, Volume 67 (2024) no. 7, pp. 1507-1524 | DOI:10.1007/s11425-023-2160-3 | Zbl:7890804
  • Comparin, Paola; Demelle, Romain K3 surfaces with action of the group M20, Bulletin of the London Mathematical Society, Volume 55 (2023) no. 5, pp. 2456-2480 | DOI:10.1112/blms.12875 | Zbl:1530.14065
  • Hayashi, Taro Finite abelian groups of K3 surfaces with smooth quotient, Chinese Annals of Mathematics. Series B, Volume 44 (2023) no. 1, pp. 99-162 | DOI:10.1007/s11401-023-0007-z | Zbl:1511.14059
  • Kanno, Keita; Watari, Taizan Communications in Mathematical Physics, 398 (2023) no. 2, pp. 703-756 | DOI:10.1007/s00220-022-04533-4 | Zbl:1508.81948
  • Brandhorst, Simon; Hofmann, Tommy Finite subgroups of automorphisms of K3 surfaces, Forum of Mathematics, Sigma, Volume 11 (2023), p. 57 (Id/No e54) | DOI:10.1017/fms.2023.50 | Zbl:1522.14050
  • Bonnafé, Cédric; Sarti, Alessandra Complex reflection groups and K3 surfaces. II: The groups G29,G30 and G31, Journal of the Korean Mathematical Society, Volume 60 (2023) no. 4, pp. 695-743 | DOI:10.4134/jkms.j220014 | Zbl:1529.14019
  • Schütt, Matthias Moduli of Gorenstein Q-homology projective planes, Journal of the Mathematical Society of Japan, Volume 75 (2023) no. 1, pp. 329-366 | DOI:10.2969/jmsj/87028702 | Zbl:1532.14070
  • Grossi, Annalisa; Onorati, Claudio; Veniani, Davide Cesare Symplectic birational transformations of finite order on O'Grady's sixfolds, Kyoto Journal of Mathematics, Volume 63 (2023) no. 3, pp. 615-639 | DOI:10.1215/21562261-10577928 | Zbl:1534.14040
  • Nikulin, Viacheslav V. Classification of degenerations of codimension 5 and their Picard lattices for Kählerian K3 surfaces with the symplectic automorphism group (C2)2, Proceedings of the Steklov Institute of Mathematics, Volume 320 (2023), pp. 172-225 | DOI:10.1134/s0081543823010091 | Zbl:1519.14037
  • Cheltsov, Ivan Kummer quartic double solids, Rendiconti del Circolo Matemàtico di Palermo. Serie II, Volume 72 (2023) no. 3, pp. 1993-2023 | DOI:10.1007/s12215-022-00767-2 | Zbl:1517.14009
  • Cheltsov, Ivan; Sarikyan, Arman Equivariant pliability of the projective space, Selecta Mathematica. New Series, Volume 29 (2023) no. 5, p. 84 (Id/No 71) | DOI:10.1007/s00029-023-00869-4 | Zbl:1531.14019
  • Degtyarev, Alex Conics on Kummer quartics, Tôhoku Mathematical Journal. Second Series, Volume 75 (2023) no. 3, pp. 395-421 | DOI:10.2748/tmj.20220224 | Zbl:7787886
  • Nikulin, Viacheslav Valentinovich Классификация вырождений коразмерности 5 и их решеток Пикара для кэлеровых K3-поверхностей с симплектической группой автоморфизмов (C2)2, Труды Математического института имени В. А. Стеклова, Volume 320 (2023), p. 189 | DOI:10.4213/tm4306
  • Baykara, Zihni Kaan; Harvey, Jeffrey A. Conway subgroup symmetric compactifications redux, Journal of High Energy Physics, Volume 2022 (2022) no. 3, p. 28 (Id/No 142) | DOI:10.1007/jhep03(2022)142 | Zbl:1522.81317
  • Laza, Radu; Zheng, Zhiwei Automorphisms and periods of cubic fourfolds, Mathematische Zeitschrift, Volume 300 (2022) no. 2, pp. 1455-1507 | DOI:10.1007/s00209-021-02810-x | Zbl:1490.14065
  • Garbagnati, Alice; Penegini, Matteo Triple covers of K3 surfaces, Nagoya Mathematical Journal, Volume 248 (2022), pp. 939-979 | DOI:10.1017/nmj.2022.15 | Zbl:1504.14030
  • Bryan, Jim; Gyenge, Ádám G-fixed Hilbert schemes on K3 surfaces, modular forms, and eta products, Épijournal de Géométrie Algébrique. EPIGA, Volume 6 (2022), p. 22 (Id/No 6) | DOI:10.46298/epiga.2022.6986 | Zbl:1493.14057
  • Bonnafé, Cédric; Sarti, Alessandra K3 surfaces with maximal finite automorphism groups containing M20, Annales de l'Institut Fourier, Volume 71 (2021) no. 2, pp. 711-730 | DOI:10.5802/aif.3411 | Zbl:1483.14064
  • Banerjee, Anindya; Moore, Gregory W. Hyperkähler isometries of K3 surfaces, Journal of High Energy Physics, Volume 2020 (2020) no. 12, p. 28 (Id/No 193) | DOI:10.1007/jhep12(2020)193 | Zbl:1457.81113
  • Chen, Weimin A characterization of the standard smooth structure of K3 surface, Proceedings of the American Mathematical Society, Volume 148 (2020) no. 6, pp. 2707-2716 | DOI:10.1090/proc/14935 | Zbl:1437.57034
  • Höhn, Gerald; Mason, Geoffrey Finite groups of symplectic automorphisms of Hyperkähler manifolds of type K3, Bulletin of the Institute of Mathematics. Academia Sinica. New Series, Volume 14 (2019) no. 2, pp. 189-264 | DOI:10.21915/bimas.2019204 | Zbl:1425.53053
  • Nikulin, Vyacheslav V. Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group D6, Izvestiya: Mathematics, Volume 83 (2019) no. 6, pp. 1201-1233 | DOI:10.1070/im8868 | Zbl:1457.14085
  • Brandhorst, Simon The classification of purely non-symplectic automorphisms of high order on K3 surfaces, Journal of Algebra, Volume 533 (2019), pp. 229-265 | DOI:10.1016/j.jalgebra.2019.05.016 | Zbl:1423.14229
  • Nikulin, Viacheslav V. Classification of degenerations and Picard lattices of Kählerian K3 surfaces with symplectic automorphism group C4, Proceedings of the Steklov Institute of Mathematics, Volume 307 (2019), pp. 130-161 | DOI:10.1134/s0081543819060087 | Zbl:1445.14058
  • Nikulin, Viacheslav Valentinovich Классификация вырождений и решеток Пикара кэлеровых К3-поверхностей с симплектической группой автоморфизмов D6, Известия Российской академии наук. Серия математическая, Volume 83 (2019) no. 6, p. 133 | DOI:10.4213/im8868
  • Nikulin, Viacheslav Valentinovich Классификация вырождений и решеток Пикара кэлеровых K3-поверхностей с симплектической группой автоморфизмов C4, Труды Математического института имени В. А. Стеклова, Volume 307 (2019), p. 148 | DOI:10.4213/tm4040
  • Nikulin, V. V. Classification of Picard lattices of K3 surfaces, Izvestiya: Mathematics, Volume 82 (2018) no. 4, pp. 752-816 | DOI:10.1070/im8719 | Zbl:1400.14100
  • Chen, Weimin Resolving symplectic orbifolds with applications to finite group actions, Journal of Gökova Geometry Topology GGT, Volume 12 (2018), pp. 1-39 | Zbl:1479.57049
  • Kondō, Shigeyuki A survey of finite groups of symplectic automorphisms of K3 surfaces, Journal of Physics A: Mathematical and Theoretical, Volume 51 (2018) no. 5, p. 20 (Id/No 053003) | DOI:10.1088/1751-8121/aa9f7e | Zbl:1392.14004
  • Schaffler, Luca K3 surfaces with Z22 symplectic action, Rocky Mountain Journal of Mathematics, Volume 48 (2018) no. 7, pp. 2347-2383 | DOI:10.1216/rmj-2018-48-7-2347 | Zbl:1407.14005
  • Nikulin, Viacheslav Valentinovich Классификация решеток Пикара К3-поверхностей, Известия Российской академии наук. Серия математическая, Volume 82 (2018) no. 4, p. 115 | DOI:10.4213/im8719
  • Nikulin, Viacheslav V. Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups. III, Izvestiya: Mathematics, Volume 81 (2017) no. 5, pp. 985-1029 | DOI:10.1070/im8629 | Zbl:1386.14140
  • Wong, Kenny Quarter-BPS states in orbifold sigma models with ADE singularities, Journal of High Energy Physics, Volume 2017 (2017) no. 6, p. 22 (Id/No 116) | DOI:10.1007/jhep06(2017)116 | Zbl:1380.81364
  • Никулин, Вячеслав Валентинович; Nikulin, Viacheslav Valentinovich Вырождения кэлеровых K3-поверхностей с конечными симплектическими группами автоморфизмов. III, Известия Российской академии наук. Серия математическая, Volume 81 (2017) no. 5, p. 105 | DOI:10.4213/im8629
  • Keum, JongHae Orders of automorphisms of K3 surfaces, Advances in Mathematics, Volume 303 (2016), pp. 39-87 | DOI:10.1016/j.aim.2016.08.014 | Zbl:1375.14125
  • Yu, Xun McKay Correspondence and New Calabi–Yau Threefolds, International Mathematics Research Notices (2016), p. rnv391 | DOI:10.1093/imrn/rnv391
  • Joumaah, Malek Non-symplectic involutions of irreducible symplectic manifolds of K3[n]-type, Mathematische Zeitschrift, Volume 283 (2016) no. 3-4, pp. 761-790 | DOI:10.1007/s00209-016-1620-2 | Zbl:1357.14055
  • Kulikov, Vik. S. Plane rational quartics and K3 surfaces, Proceedings of the Steklov Institute of Mathematics, Volume 294 (2016), pp. 95-128 | DOI:10.1134/s0081543816060079 | Zbl:1356.14028
  • Garbagnati, Alice; Sarti, Alessandra Kummer surfaces and K3 surfaces with (Z/2Z)4 symplectic action, Rocky Mountain Journal of Mathematics, Volume 46 (2016) no. 4, pp. 1141-1205 | DOI:10.1216/rmj-2016-46-4-1141 | Zbl:1370.14033
  • Harder, Andrew; Thompson, Alan The geometry and moduli of K3 surfaces, Calabi-Yau varieties: arithmetic, geometry and physics. Lecture notes on concentrated graduate courses, Toronto, Canada, July 1 – December 31, 2013, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2015, pp. 3-43 | DOI:10.1007/978-1-4939-2830-9_1 | Zbl:1329.14003
  • Whitcher, Ursula Reflexive polytopes and lattice-polarized K3 surfaces, Calabi-Yau varieties: arithmetic, geometry and physics. Lecture notes on concentrated graduate courses, Toronto, Canada, July 1 – December 31, 2013, Toronto: The Fields Institute for Research in the Mathematical Sciences; New York, NY: Springer, 2015, pp. 65-79 | DOI:10.1007/978-1-4939-2830-9_3 | Zbl:1329.14086
  • Nikulin, V V Degenerations of Kählerian K3 surfaces with finite symplectic automorphism groups, Izvestiya: Mathematics, Volume 79 (2015) no. 4, p. 740 | DOI:10.1070/im2015v079n04abeh002760
  • Nikulin, Viacheslav Valentinovich Вырождения кэлеровых К3-поверхностей с конечными симплектическими группами автоморфизмов, Известия Российской академии наук. Серия математическая, Volume 79 (2015) no. 4, p. 103 | DOI:10.4213/im8276
  • Valle, Jaime Cuadros Null Sasaki η-Einstein structures in 5-manifolds, Geometriae Dedicata, Volume 169 (2014), pp. 343-359 | DOI:10.1007/s10711-013-9859-9 | Zbl:1360.53051
  • Bini, Gilberto; Garbagnati, Alice Quotients of the Dwork pencil, Journal of Geometry and Physics, Volume 75 (2014), pp. 173-198 | DOI:10.1016/j.geomphys.2013.10.001 | Zbl:1314.14078
  • Karp, Dagan; Lewis, Jacob; Moore, Daniel; Skjorshammer, Dmitri; Whitcher, Ursula On a Family of K3 Surfaces with S4 Symmetry, Arithmetic and Geometry of K3 Surfaces and Calabi–Yau Threefolds, Volume 67 (2013), p. 367 | DOI:10.1007/978-1-4614-6403-7_12
  • Garbagnati, Alice Elliptic K3 surfaces with abelian and dihedral groups of symplectic automorphisms, Communications in Algebra, Volume 41 (2013) no. 2, pp. 583-616 | DOI:10.1080/00927872.2011.621006 | Zbl:1266.14029
  • Nikulin, V. V. Kählerian K3 surfaces and Niemeier lattices. I, Izvestiya: Mathematics, Volume 77 (2013) no. 5, pp. 954-997 | DOI:10.1070/im2013v077n05abeh002666 | Zbl:1281.14032
  • Taormina, A.; Wendland, K. The overarching finite symmetry group of Kummer surfaces in the Mathieu group M24, Journal of High Energy Physics, Volume 2013 (2013) no. 8, p. 62 (Id/No 125) | DOI:10.1007/jhep08(2013)125 | Zbl:1342.81470
  • Никулин, Вячеслав Валентинович; Nikulin, Viacheslav Valentinovich Кэлеровы К3-поверхности и решетки Нимейера. I, Известия Российской академии наук. Серия математическая, Volume 77 (2013) no. 5, p. 109 | DOI:10.4213/im8016
  • Hashimoto, Kenji Finite symplectic actions on the K3 lattice, Nagoya Mathematical Journal, Volume 206 (2012), pp. 99-153 | DOI:10.1215/00277630-1548511 | Zbl:1243.14029
  • Cheltsov, Ivan; Shramov, Constantin Three embeddings of the Klein simple group into the Cremona group of rank three, Transformation Groups, Volume 17 (2012) no. 2, pp. 303-350 | DOI:10.1007/s00031-012-9183-8 | Zbl:1272.14013
  • Whitcher, Ursula Symplectic automorphisms and the Picard group of a K3 surface, Communications in Algebra, Volume 39 (2011) no. 4, pp. 1427-1440 | DOI:10.1080/00927871003738949 | Zbl:1211.14043
  • Hashimoto, Kenji; Terasoma, Tomohide Period map of a certain K3 family with an 𝔖5-action, Journal für die reine und angewandte Mathematik (Crelles Journal), Volume 2011 (2011) no. 652, p. 1 | DOI:10.1515/crelle.2011.014
  • Garbagnati, Alice The dihedral group D5 as a group of symplectic automorphisms on K3 surfaces, Proceedings of the American Mathematical Society, Volume 139 (2011) no. 6, pp. 2045-2055 | DOI:10.1090/s0002-9939-2011-10650-6 | Zbl:1219.14050
  • Garbagnati, Alice Symplectic automorphisms on Kummer surfaces, Geometriae Dedicata, Volume 145 (2010), pp. 219-232 | DOI:10.1007/s10711-009-9420-z | Zbl:1195.14054
  • Garbagnati, Alice; Sarti, Alessandra Elliptic fibrations and symplectic automorphisms on K3 surfaces, Communications in Algebra, Volume 37 (2009) no. 10, pp. 3601-3631 | DOI:10.1080/00927870902828785 | Zbl:1178.14041
  • Degtyarev, Alex On deformations of singular plane sextics, Journal of Algebraic Geometry, Volume 17 (2008) no. 1, pp. 101-135 | DOI:10.1090/s1056-3911-07-00469-9 | Zbl:1131.14040
  • Chen, Weimin; Kwasik, Slawomir Symmetries and exotic smooth structures on a K3 surface, Journal of Topology, Volume 1 (2008) no. 4, pp. 923-962 | DOI:10.1112/jtopol/jtn027 | Zbl:1207.57042
  • Zhang, De-Qi Automorphisms of K3 surfaces, Proceedings of the international conference on complex geometry and related fields, Shanghai, China, 2004, Providence, RI: American Mathematical Society (AMS); Somerville, MA: International Press, 2007, pp. 379-392 | Zbl:1126.14048
  • Zhang, D.-Q. The alternating groups and K3 surfaces, Journal of Pure and Applied Algebra, Volume 207 (2006) no. 1, pp. 119-138 | DOI:10.1016/j.jpaa.2005.09.009 | Zbl:1103.14024
  • ULUDAG, A. MUHAMMED GALOIS COVERINGS OF THE PLANE BY K3 SURFACES, Kyushu Journal of Mathematics, Volume 59 (2005) no. 2, p. 393 | DOI:10.2206/kyushujm.59.393
  • Degtyarev, Alex; Itenberg, Ilia; Kharlamov, Viatcheslav Finiteness and quasi-simplicity for symmetric K3-surfaces, Duke Mathematical Journal, Volume 122 (2004) no. 1, pp. 1-49 | DOI:10.1215/s0012-7094-04-12211-8 | Zbl:1073.14053
  • Keum, J.; Zhang, D.-Q. Fundamental groups of open K3 surfaces, Enriques surfaces and Fano 3-folds, Journal of Pure and Applied Algebra, Volume 170 (2002) no. 1, pp. 67-91 | DOI:10.1016/s0022-4049(01)00110-4 | Zbl:1060.14057
  • Shimada, Ichiro; Zhang, De-Qi Classification of extremal elliptic K3 surfaces and fundamental groups of open K3 surfaces, Nagoya Mathematical Journal, Volume 161 (2001), pp. 23-54 | DOI:10.1017/s002776300002211x | Zbl:1064.14503
  • Casella, Mario; Kühnel, Wolfgang A triangulated K3 surface with the minimum number of vertices, Topology, Volume 40 (2001) no. 4, p. 753 | DOI:10.1016/s0040-9383(99)00082-8
  • Çınkır, Zübeyir; Önsiper, Hurşit On symplectic quotients of K3 surfaces, Indagationes Mathematicae. New Series, Volume 11 (2000) no. 4, pp. 533-538 | DOI:10.1016/s0019-3577(00)80022-1 | Zbl:1026.14011
  • Tokunaga, Hiro-o Dihedral coverings of algebraic surfaces and their application, Transactions of the American Mathematical Society, Volume 352 (2000) no. 9, pp. 4007-4017 | DOI:10.1090/s0002-9947-00-02524-1 | Zbl:0958.14008
  • Kondō, Shigeyuki Niemeier lattices, Mathieu groups, and finite groups of symplectic automorphisms of K3 surfaces. With an appendix by Shigeru Mukai, Duke Mathematical Journal, Volume 92 (1998) no. 3, pp. 593-603 | DOI:10.1215/s0012-7094-98-09217-1 | Zbl:0958.14025

Cité par 73 documents. Sources : Crossref, zbMATH