On sait que l’ensemble des points singuliers d’une application différentiable générique d’une variété à dimensions dans une surface est une sous-variété à une dimension de et que a une stratification naturelle introduite par l’indice absolu. Dans cet article nous donnons une caractérisation complète des sous-variétés à une dimension (stratifiées) qui se présentent comme un ensemble de points singuliers d’une application générique, en termes de classes d’homologie représentées par les sous-variétés.
It is known that the singular set of a generic smooth map of an -dimensional manifold into a surface is a closed 1-dimensional submanifold of and that it has a natural stratification induced by the absolute index. In this paper, we give a complete characterization of those 1-dimensional (stratified) submanifolds which arise as the singular set of a generic map in terms of the homology class they represent.
@article{AIF_1995__45_4_1135_0, author = {Saeki, Osamu}, title = {Constructing generic smooth maps of a manifold into a surface with prescribed singular loci}, journal = {Annales de l'Institut Fourier}, pages = {1135--1162}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {4}, year = {1995}, doi = {10.5802/aif.1489}, mrnumber = {97e:57035}, zbl = {0833.57018}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1489/} }
TY - JOUR AU - Saeki, Osamu TI - Constructing generic smooth maps of a manifold into a surface with prescribed singular loci JO - Annales de l'Institut Fourier PY - 1995 SP - 1135 EP - 1162 VL - 45 IS - 4 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1489/ DO - 10.5802/aif.1489 LA - en ID - AIF_1995__45_4_1135_0 ER -
%0 Journal Article %A Saeki, Osamu %T Constructing generic smooth maps of a manifold into a surface with prescribed singular loci %J Annales de l'Institut Fourier %D 1995 %P 1135-1162 %V 45 %N 4 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1489/ %R 10.5802/aif.1489 %G en %F AIF_1995__45_4_1135_0
Saeki, Osamu. Constructing generic smooth maps of a manifold into a surface with prescribed singular loci. Annales de l'Institut Fourier, Tome 45 (1995) no. 4, pp. 1135-1162. doi : 10.5802/aif.1489. http://www.numdam.org/articles/10.5802/aif.1489/
[Bi]Sur certaines applications génériques de S3 dans le plan, travail de diplôme, Université de Lausanne, 1973.
,[BdR]Sur certaines applications génériques d'une variété close à 3 dimensions dans le plan, l'Enseign. Math., 20 (1974), 275-292. | MR | Zbl
and ,[C]Bifurcaçõoes de applicaçõ de Whitney, Tese, IMPA, 1978.
,[E1]On singularities of folding type, Math. USSR Izv., 4 (1970), 1119-1134. | Zbl
,[E2]Surgery of singularities of smooth mappings, Math. USSR Izv., 6 (1972), 1302-1326. | Zbl
,[L1]The singularities, Sq1, Illinois J. Math., 8 (1964), 152-168. | MR | Zbl
,[L2]Singularities of differentiable mappings, Proceedings of Liverpool Singularities, Symposium I, Edited by C.T.C. Wall, Lecture Notes in Math. vol. 192, Springer-Verlag, Berlin, Heidelberg, New York, 1971, 1-89. | Zbl
,[L3]Elimination of cusps, Topology, 3 (suppl. 2) (1965), 263-296. | MR | Zbl
,[MPS]Stable maps of 3-manifolds into the plane and their quotient spaces, Proc. London Math. Soc., 71 (1995), 158-174. | MR | Zbl
, and ,[Po] Informações topológicas sobre o domínio de certas applicacões estáveis, Tese de Livre-Docência, Universidade de São Paulo, 1983.
,[PF]On special generic maps from a closed manifold into the plane, Topology Appl., 35 (1990), 41-52. | MR | Zbl
and ,[S1]Topology of special generic maps of manifolds into Euclidean spaces, Topology Appl., 49 (1993), 265-293. | MR | Zbl
,[S2]Simple stable maps of 3-manifolds into surfaces, to appear in Topology. | Zbl
,[T]Les singularités des applications différentiables, Ann. Inst. Fourier, Grenoble, 6 (1955-1956), 43-87. | EuDML | Numdam | MR | Zbl
,[W]On singularities of mappings of Euclidean spaces I ; mappings of the plane into the plane, Ann. of Math., 62 (1955), 374-410. | MR | Zbl
,Cité par Sources :