Nous nous intéressons à la régularité des commutateurs où est une fonction localement intégrable et désignent les transformées de Riesz. Nous montrons que si et , alors les commutateurs sont continus de dans l’espace de Besov si et seulement si appartient à l’espace -Triebel-Lizorkin . En particulier, si , les commutateurs sont continus de dans l’espace de Sobolev si et seulement si appartient à l’espace -Sobolev .
In this paper we consider the regularity problem for the commutators where is a locally integrable function and are the Riesz transforms in the -dimensional euclidean space . More precisely, we prove that these commutators are bounded from into the Besov space for and if and only if is in the -Triebel-Lizorkin space . The reduction of our result to the case gives in particular that the commutators are bounded form into the Sobolev space if and only if is in the -Sobolev space .
@article{AIF_1995__45_3_795_0, author = {Youssfi, Abdellah}, title = {Regularity properties of commutators and $BMO${-Triebel-Lizorkin} spaces}, journal = {Annales de l'Institut Fourier}, pages = {795--807}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {3}, year = {1995}, doi = {10.5802/aif.1474}, mrnumber = {96k:47089}, zbl = {0827.46030}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1474/} }
TY - JOUR AU - Youssfi, Abdellah TI - Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces JO - Annales de l'Institut Fourier PY - 1995 SP - 795 EP - 807 VL - 45 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1474/ DO - 10.5802/aif.1474 LA - en ID - AIF_1995__45_3_795_0 ER -
%0 Journal Article %A Youssfi, Abdellah %T Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces %J Annales de l'Institut Fourier %D 1995 %P 795-807 %V 45 %N 3 %I Association des Annales de l’institut Fourier %U http://www.numdam.org/articles/10.5802/aif.1474/ %R 10.5802/aif.1474 %G en %F AIF_1995__45_3_795_0
Youssfi, Abdellah. Regularity properties of commutators and $BMO$-Triebel-Lizorkin spaces. Annales de l'Institut Fourier, Tome 45 (1995) no. 3, pp. 795-807. doi : 10.5802/aif.1474. http://www.numdam.org/articles/10.5802/aif.1474/
[1] Analyse fonctionnelle dans l'espace euclidien, Pub. Math. Paris VII, 23 (1987). | Zbl
,[2] Réalisations des espaces de Besov homogènes, Arkiv for Math., 26 (1988), 41-54. | MR | Zbl
,[3] Commutators of singular integral operators, Proc. Nat. Acad. Sci., 53 (1965), 1092-1099. | MR | Zbl
,[4] Compensated compactness and Hardy spaces, J. Math Pures et Appl., 72 (1993), 247-286. | MR | Zbl
, , and ,[5] Factorization theorems for Hardy spaces in several variables, Ann. of Math., 103 (1976), 611-635. | MR | Zbl
, and ,[6] A discrete transform and applications to distribution spaces, J. Funct. Anal., 93 (1990), 34-170. | MR | Zbl
, and ,[7] Ondelettes et opérateurs. Tome II, Hermann, 1990. | Zbl
,[8] Commutateurs with fractional differentiation and BMO-Sobolev spaces, Indiana Univ. Math. J., 34 (1985), 205-215. | MR | Zbl
,[9] New thoughts on Besov spaces, Duke Univ. Math. Series I Durham, North Carolina, 1976. | MR | Zbl
,[10] Introduction to Fourier Analysis on Euclidean spaces, Princeton Univ. Press, Princeton, 1971. | MR | Zbl
and ,[11] Bounded mean oscillations and Sobolev spaces, Indiana Univ. Math. J., 29 (1980), 539-558. | MR | Zbl
,[12] Theory of function spaces (Leipzig 1983). | Zbl
,[13] Theory of function spaces II, Basel-Boston-Berlin, Birkhäuser, 1992. | MR | Zbl
,[14] Localisation des espaces de Lizorkin-Triebel homogènes, Math. Na-chr., 147 (1990), 107-121. | MR | Zbl
,[15] Commutators on Besov spaces and factorization of the paraproduct, Bull. Sc. Math., 119 (1995), 157-186. | MR | Zbl
,Cité par Sources :