Soit une variété affine conique factorielle sur un corps algébriquement clos de caractéristique zéro. Nous considérons les actions équidimensionnelles, algébriques, et stables d’un tore algébrique sur qui sont compatibles avec la structure conique. Nous montrons que de telles actions sont colibres et que les nilcônes de qui lui sont associés sont des intersections complètes.
Let be an affine conical factorial variety over an algebraically closed field of characteristic zero. We consider equidimensional and stable algebraic actions of an algebraic torus on compatible with the conical structure. We show that such actions are cofree and the nullcones of associated with them are complete intersections.
@article{AIF_1995__45_3_681_0, author = {Nakajima, Haruhisa}, title = {Equidimensional actions of algebraic tori}, journal = {Annales de l'Institut Fourier}, pages = {681--705}, publisher = {Association des Annales de l{\textquoteright}institut Fourier}, volume = {45}, number = {3}, year = {1995}, doi = {10.5802/aif.1470}, mrnumber = {96e:14055}, zbl = {0823.14035}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1470/} }
TY - JOUR AU - Nakajima, Haruhisa TI - Equidimensional actions of algebraic tori JO - Annales de l'Institut Fourier PY - 1995 SP - 681 EP - 705 VL - 45 IS - 3 PB - Association des Annales de l’institut Fourier UR - http://www.numdam.org/articles/10.5802/aif.1470/ DO - 10.5802/aif.1470 LA - en ID - AIF_1995__45_3_681_0 ER -
Nakajima, Haruhisa. Equidimensional actions of algebraic tori. Annales de l'Institut Fourier, Tome 45 (1995) no. 3, pp. 681-705. doi : 10.5802/aif.1470. http://www.numdam.org/articles/10.5802/aif.1470/
[BK] Über Bahenen und deren Deformationen bei linearen Aktionen reductiver Gruppen, Comment. Math. Helvetici, 54 (1979), 1-104. | EuDML | MR | Zbl
, ,[CM] Cohen-Macaulay Rings, Cambridge Studies Advanced Math., 37, Cambridge, Cambridge Univ. 1993. | MR | Zbl
, ,[GM] Geometrische Methoden in der Invariantentheorie, Aspecte der Mathematik, D1, Braunschweig-Wiesbaded, Vieweg, 1984. | MR | Zbl
,[H] Desingularizations of varieties of nullforms, Invent. Math., 55 (1979), 141-163. | EuDML | MR | Zbl
,[HR] Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay, Advances in Math., 13 (1974), 115-175. | MR | Zbl
, ,[K] Some remarks on nilpotent orbits, J. Algebra, 64 (1980), 190-213. | MR | Zbl
,[L] Slices étales, Bull. Soc. Math. France Mémoire, 33 (1973), 81-105. | EuDML | Numdam | MR | Zbl
,[LR] Local Rings, Interscience Tracts in Pure & Applied Math., 13, New York, Wiley, 1962. | Zbl
,[M] Finite generation of class groups of rings of invariants, Proc. Amer. Math. Soc., 60 (1976), 45-48. | MR | Zbl
,[N1] Relative invariants of finite groups, J. Algebra, 79 (1982), 218-234. | MR | Zbl
,[N2] Class groups of localities of rings of invariants of reductive algebraic groups, Math. Zeit., 182 (1983), 1-15. | MR | Zbl
,[N3] Representations of a reductive algebraic group whose algebras of invariants are complete intersections, J. reine angew. Math., 367 (1986), 115-138. | MR | Zbl
,[N4] Equidimensional toric extensions of symplectic groups, Proc. Japan Acad., 70 Ser. A (1994), 74-79. | MR | Zbl
,[N5] Semisimple algebraic groups admitting equidimensional toric extensions, in preparation.
,[P1] Representations with a free module of covariants, Func. Anal. Appl., 10 (1976), 242-244. | MR | Zbl
,[P2] Modern developments in invariant theory, Proc. of International Congress of Mathematicians (Berkeley 1986) Vol. 1, 394-406, Providence, Amer. Math. Soc., 1987. | Zbl
,[P3] Groups, Generators, Syzygies, and Orbits in Invariant Theory, Transl. Math. Monographs 100, Providence, Amer. Math. Soc., 1992. | MR | Zbl
,[S] Lifting smooth homotopies of orbit spaces, Inst. Hautes Etudes Sci. Publ. Math., 51 (1980), 37-136. | Numdam | MR | Zbl
,[TE] Toroidal Embeddings I, Lecture Notes in Math., 339, Berlin Heidelberg New York, Springer, 1973. | MR | Zbl
, , , ,[W1] A proof of the Popov conjecture for tori, Proc. of Amer. Math. Soc., 114 (1992), 839-845. | MR | Zbl
,[W2] Equidimensional varieties and associated cones, J. Algebra, 159 (1993), 47-53. | MR | Zbl
,Cité par Sources :