D-modules and representation theory of Lie groups
Annales de l'Institut Fourier, Tome 43 (1993) no. 5, pp. 1597-1618.
@article{AIF_1993__43_5_1597_0,
     author = {Kashiwara, Masaki},
     title = {$D$-modules and representation theory of {Lie} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {1597--1618},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {43},
     number = {5},
     year = {1993},
     doi = {10.5802/aif.1385},
     mrnumber = {95b:22033},
     zbl = {0823.22013},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1385/}
}
TY  - JOUR
AU  - Kashiwara, Masaki
TI  - $D$-modules and representation theory of Lie groups
JO  - Annales de l'Institut Fourier
PY  - 1993
SP  - 1597
EP  - 1618
VL  - 43
IS  - 5
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1385/
DO  - 10.5802/aif.1385
LA  - en
ID  - AIF_1993__43_5_1597_0
ER  - 
%0 Journal Article
%A Kashiwara, Masaki
%T $D$-modules and representation theory of Lie groups
%J Annales de l'Institut Fourier
%D 1993
%P 1597-1618
%V 43
%N 5
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1385/
%R 10.5802/aif.1385
%G en
%F AIF_1993__43_5_1597_0
Kashiwara, Masaki. $D$-modules and representation theory of Lie groups. Annales de l'Institut Fourier, Tome 43 (1993) no. 5, pp. 1597-1618. doi : 10.5802/aif.1385. http://www.numdam.org/articles/10.5802/aif.1385/

[Bei] A. Beilinson, Localization of representations of reductive Lie algebra, Proc. of ICM 1982, (1983), 699-716. | Zbl

[BeiBer] A. Beilinson and J. Bernstein, Localization de g-modules, C.R. Acad. Sci. Paris, 292 (1981), 15-18. | MR | Zbl

[BeiBerD] A. Beilinson, J. Bernstein and P. Deligne, Faisceaux Pervers, Astérisque, 100 (1982). | MR | Zbl

[BoBr] W. Borho and J.L. Brylinski, Differential operators on homogeneous spaces, I, II, Invent. Math., 69 (1982), 437-476; ibid. 80 (1985), 1-68. | Zbl

[FSh] A.I. Fomin and N.N. Shapavalov, A property of the character of real semisimple groups, Funct. Anal. Appl., 8 (1974), 270-271. | Zbl

[HeC] Harish-Chandra, 1. Representation of a semisimple Lie group on a Banach space I, Trans. Amer. Math., Soc., 74 (1953), 185-243, 2. The characters of semisimple Lie groups, ibid., 83 (1956), 98-163, 3. Invariant eigendistributions on semisimple Lie groups, ibid., 119 (1965), 457-508, 4. Discrete series for semisimple Lie groups I, Acta Math., 113 (1965), 241-318.

[Hi] T. Hirai, Invariant eigendistributions of Laplace operators on real semisimple Lie groups II, III, Japan. J. Math., 2 (1976), 27-89, 269-341. | MR | Zbl

[HoK] R. Hotta and M. Kashiwara, 1. The invariant holonomic systems of the enveloping algebra of a semisimple Lie algebra, Invent. Math., 75 (1984), 327-358. 2. Quotients of the Harish-Chandra system by primitive ideals, Geometry of Today, Progress in Math., Birkhäuser Boston Inc., 60 (1985), 185-205. | MR | Zbl

[K] M. Kashiwara, 1. Character, character cycle, fixed point theorem and group representations, Advanced Studies in Pure Math., 14 (1988) 369-378, 2. Open problems in group representation theory, Proceeding of Taniguchi Symposium held in 1986, RIMS preprint 569, 3. Representation theory and D-modules on flag manifolds, Astérisque, 173-174 (1989), 55-109.

[KSp] M. Kashiwara and P. Schapira, Sheaves on Manifold, Grundlehren der Mathematischen Wissenschaften, 292, Springer (1990). | Zbl

[KSd] M. Kashiwara and W. Schmid, Equivariant derived category and representations of semisimple Lie groups, in preparation. | Zbl

[KV] M. Kashiwara and M. Vergne, K-types and singular spectrum, in Non-Commutative Harmonic Analysis, Lecture notes in Math., Springer-Verlag, 728 (1979), 177-200. | MR | Zbl

[M] B. Malgrange, Cohomologie de Spencer (d'après Quillen), Cours Fac. Sc. Orsay (1965-1966), Publ. sém. Math. d'Orsay (France 1966).

[Mt] T. Matsuki, Orbits on affine symmetric speces under the action of parabolic subgroups, Hiroshima Math., J., 12 (1982), 307-320. | MR | Zbl

[MUV] I. Mirković, T. Uzawa and K. Vilonen, Matsuki correspondence for sheaves, Invent. Math., 109 (1992), 231-245. | EuDML | MR | Zbl

[N] K. Nishiyama, Virtual characters and constant coefficient invariant eigendistributions on a semisimple Lie groups, Japan. J. Math. New Series, 12 (1986), 75-94. | MR | Zbl

[Sd] W. Schmid, Boundary value problems for group invariant differential equations, Elie Cartan et les Mathématiques d'aujourd'hui, Astérisque, (1985), 311-322. | Numdam | MR | Zbl

[SV] W. Schmid and K. Vilonen, Character, fixed points and Osborn's conjecture, preprint. | Zbl

[SW] W. Schmid and J.A. Wolf, Globalizations of Harish-Chandra modules, Bulletin of AMS, 17 (1987), 117-120. | MR | Zbl

[Se] J. Sekiguchi, Remarks on real nilpotent orbits of a symmetric pair, J. Math. Soc. Japan, 39 (1987), 127-138. | MR | Zbl

Cité par Sources :