Soit un difféomorphisme Morse-Smale d’une surface fermée. À une courbe instable de comportement 1 par rapport à un attracteur de correspond une courbe fermée sur un des tores (Bassin. Cette remarque nous permettra de définir de nouveaux invariants de conjugaison de . Nous en déduisons aussi un moyen d’écrire explicitement une puissance de comme le produit du temps 1 d’un champ de vecteurs Morse-Smale topologique par des isotopies à support des disques et des twists de Dehn de supports disjoints.
Let be a Morse-Smale diffeomorphism of a closed surface. The image of an unstable curve of behaviour 1 with respect to an attractor of in (Bassin is a closed curve. This observation allows us to define new conjugation invariants of . It gives also a way of explicitely decomposing a power of as the product of the time 1 of a topological Morse-Smale vector field by isotopies supported in discs and Dehn twists with disjoint supports.
@article{AIF_1993__43_1_265_0, author = {Langevin, R\'emi}, title = {Quelques nouveaux invariants des diff\'eomorphismes {Morse--Smale} d'une surface}, journal = {Annales de l'Institut Fourier}, pages = {265--278}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {43}, number = {1}, year = {1993}, doi = {10.5802/aif.1330}, mrnumber = {95g:58121}, zbl = {0769.58033}, language = {fr}, url = {http://www.numdam.org/articles/10.5802/aif.1330/} }
TY - JOUR AU - Langevin, Rémi TI - Quelques nouveaux invariants des difféomorphismes Morse--Smale d'une surface JO - Annales de l'Institut Fourier PY - 1993 SP - 265 EP - 278 VL - 43 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1330/ DO - 10.5802/aif.1330 LA - fr ID - AIF_1993__43_1_265_0 ER -
%0 Journal Article %A Langevin, Rémi %T Quelques nouveaux invariants des difféomorphismes Morse--Smale d'une surface %J Annales de l'Institut Fourier %D 1993 %P 265-278 %V 43 %N 1 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1330/ %R 10.5802/aif.1330 %G fr %F AIF_1993__43_1_265_0
Langevin, Rémi. Quelques nouveaux invariants des difféomorphismes Morse--Smale d'une surface. Annales de l'Institut Fourier, Tome 43 (1993) no. 1, pp. 265-278. doi : 10.5802/aif.1330. http://www.numdam.org/articles/10.5802/aif.1330/
[AG] The topological classification of cascades on closed two dimensional manifolds, Uspekhi Mat. Nauk, 41, 1 (1990), 3-32. | MR | Zbl
and ,[BG] Diffeomorphisms with orientable heteroclinic sets on two-dimensional manifolds, Methods of the quantitative theory of differential equations, Gorkii State University, Gorkii (1985), 139-152.
and ,[CL] A labyrinth and other ways to lose one's way. Proceedings Heraklion. Singularities and dynamical systems S.N. Pnevmatikos (editor), Elsevier Science Published B.V, North Holland, 1985.
et ,[Fl] Classification of gradient like flows in dimension two and three, Bol. Soc. Bras. Math., (1975), 155-183. | MR | Zbl
.[F] Entropy and twisted cohomology, Topology, Vol. 25 n° 4 (1986), 455-470. | MR | Zbl
,[L] Motifs des difféomorphismes en dimension 2, Manuscrit 1992.
,[Pa] On Morse-Smale dynamical systems, Topology, Vol. 8, 385-404. | MR | Zbl
,[PaM] Geometric theory of dynamical systems. An introduction, Springer, New York, 1982. | MR | Zbl
and ,[Pe1] Structural stability on two manifolds, Topology, 1 (1962), 101-120. | MR | Zbl
,[Pe2] On the classification of flows on 2-manifolds, Proc. Symp. Dyn. Systems Salvador. Acad. Press, 1973, 389-419. | MR | Zbl
,[SS] Homology theory and dynamical systems, Topology, 14 (1975), 109-132. | MR | Zbl
and ,Cité par Sources :