Fibration of the phase space for the Korteweg-de Vries equation
Annales de l'Institut Fourier, Tome 41 (1991) no. 3, pp. 539-575.

Dans cet article on démontre que la fibration de L 2 (S 1 ) par des potentiels isospectraux pour l’équation de Schrödinger périodique à une dimension est triviale. Ce résultat peut être appliqué aux solutions de N lacunes de l’équation de Korteweg-de Vries (KDV) sur le cercle : on en déduit que KdV — un système hamiltonien complètement intégrable — a des variables action-angle globales.

In this article we prove that the fibration of L 2 (S 1 ) by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to N-gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.

@article{AIF_1991__41_3_539_0,
     author = {Kappeler, Thomas},
     title = {Fibration of the phase space for the {Korteweg-de} {Vries} equation},
     journal = {Annales de l'Institut Fourier},
     pages = {539--575},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {41},
     number = {3},
     year = {1991},
     doi = {10.5802/aif.1265},
     mrnumber = {92k:58212},
     zbl = {0731.58033},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1265/}
}
TY  - JOUR
AU  - Kappeler, Thomas
TI  - Fibration of the phase space for the Korteweg-de Vries equation
JO  - Annales de l'Institut Fourier
PY  - 1991
SP  - 539
EP  - 575
VL  - 41
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1265/
DO  - 10.5802/aif.1265
LA  - en
ID  - AIF_1991__41_3_539_0
ER  - 
%0 Journal Article
%A Kappeler, Thomas
%T Fibration of the phase space for the Korteweg-de Vries equation
%J Annales de l'Institut Fourier
%D 1991
%P 539-575
%V 41
%N 3
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1265/
%R 10.5802/aif.1265
%G en
%F AIF_1991__41_3_539_0
Kappeler, Thomas. Fibration of the phase space for the Korteweg-de Vries equation. Annales de l'Institut Fourier, Tome 41 (1991) no. 3, pp. 539-575. doi : 10.5802/aif.1265. http://www.numdam.org/articles/10.5802/aif.1265/

[CL] E.A. Coddington, N. Levinson, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. | MR | Zbl

[DU] J.J. Duistermaat, On global action-angle coordinates, C.P.A.M., 33 (1980), 687-706. | MR | Zbl

[FIT] A. Finkel, E. Isaacson, E. Trubowitz, An explicit solution of the inverse problem for Hill's equation, SIAM J. Math. Anal., 18 (1987), 46-53. | MR | Zbl

[GT1] J. Garnett, E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators, Comm. Math. Helv., 59 (1984), 258-312. | MR | Zbl

[GT2] J. Garnett, E. Trubowitz, Gaps and bands of one dimensional periodic Schrödinger operators II, Comm. Math. Helv., 62 (1987), 18-37. | MR | Zbl

[GK] I.C. Gohberg, M.G. Krein, Introduction to the Theory of Linear Non Selfadjoint Operators, Transl. of Math Monogr., vol. 18, AMS, Providence, 1969. | MR | Zbl

[Ka] T. Kato, Perturbation Theory for Linear Operators, 2nd ed., Springer-Verlag, 1976. | MR | Zbl

[Kp] T. Kappeler, On the periodic spectrum of the 1-dimensional Schrödinger operator, Comm. Math. Helv., 65 (1990), 1-3. | MR | Zbl

[Ma] V.A. Marcenko, Sturm Liouville Operators and Applications, Birkäuser, Basel, 1986. | Zbl

[MM] H.P. Mckean, P. Van Moerbeke, The spectrum of Hill's equation, Inv. Math., 30 (1975), 217-274. | MR | Zbl

[MW] W. Magnus, W. Winkler, Hill's Equation, Wiley-Interscience, New York, 1986.

[MT] H.P. Mickean, E. Trubowitz, Hill's operator and hyperelliptic function theory in the presence of infinitely many branch points, CPAM, 24 (1976), 143-226. | MR | Zbl

[PS] G. Polya, G. Szegö, Aufgaben und Lehrsätze aus der Analysis, vol. 2, 3rd ed., Grundlehren, Bd 20, Springer-Verlag, New York, 1964. | Zbl

[PT] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Academic Press, 1987. | Zbl

Cité par Sources :