Soit le produit libre de groupes finis d’ordre , et la probabilité prenant la valeur sur chaque élément de . Nous décrivons ici le spectre ponctuel de sur . On montre en particulier que ce spectre ponctuel apparaît pour certains choix des nombres , et les espaces propres correspondants dans sont décrits. Enfin, on obtient une décomposition de la représentation régulière de à l’aide de la fonction de Green de , cette décomposition étant irréductible si, et seulement si, n’a pas de sous-espace propre.
Let be the product of finite groups each having order and let be the probability measure which takes the value on each element of . In this paper we shall describe the point spectrum of in and the corresponding eigenspaces. In particular we shall see that the point spectrum occurs only for suitable choices of the numbers . We also compute the continuous spectrum of in in several cases. A family of irreducible representations of , parametrized on the continuous spectrum of , is here presented. Finally, we shall get a decomposition of the regular representation of by means of the Green function of and the decomposition is into irreducibles if and only if there are no true eigenspaces for .
@article{AIF_1991__41_2_467_0, author = {Kuhn, M. Gabriella}, title = {Random walks on free products}, journal = {Annales de l'Institut Fourier}, pages = {467--491}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {2}, year = {1991}, doi = {10.5802/aif.1261}, mrnumber = {93a:43008}, zbl = {0725.60009}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1261/} }
Kuhn, M. Gabriella. Random walks on free products. Annales de l'Institut Fourier, Tome 41 (1991) no. 2, pp. 467-491. doi : 10.5802/aif.1261. http://www.numdam.org/articles/10.5802/aif.1261/
[A] Spectral theory on a free group and algebraic curves, J. Fac. Sci. Univ. Tokyo, Sect. IA Math., 31 (1984), 297-317. | MR | Zbl
,[AK] Green functions and spectra on free products of cyclic groups, Annales Inst. Fourier, 38-1 (1988), 59-85. | Numdam | MR | Zbl
, ,[CF-T] Projections of uniqueness for Lp(G), Pacific J. of Math., 51 (1974), 34-37. | MR | Zbl
, ,[CS1] Harmonic analysis on the free product of two cyclic groups, J. Funct. Anal., 65 (1986), 147-171. | MR | Zbl
, ,[CS2] Random walks on free products, quotient and amalgams, Nagoya Math. J., 102 (1986), 163-180. | MR | Zbl
, ,[CT] Orthogonal polynomials with a constant recursion formula and an application to harmonic analysis, J. Funct. Anal., 59 (1984), 175-184. | MR | Zbl
, ,[DM] Random walk on groups with a finite number of generators, Sov. Math. Dokl., 2 (1961), 399-402. | Zbl
, ,[DS] Linear Operators, Interscience, New York, 1963.
, ,[F-TS] Harmonic analysis for anisotropic random walks on homogeneous trees, to appear in Memoirs A.M.S. | Zbl
, ,[IP] Spherical functions on symmetrical graphs, Harmonic Analysis, Proceedings Cortona, Italy, Springer Lecture Notes in Math.
, ,[K] Anisotropic random walks on the free product of cyclic groups, irreducible representations and indempotents of C*reg(G), preprint. | Zbl
,[K-S] Restrictions of the special representation of Aut(Trees) to two cocompact subgroups, to appear in Rocky Moutain J. | Zbl
, ,[M-L] Random walks and convolution operators on free products, Doctoral Dissertation, New York University.
,[S] Harmonic analysis for anisotropic random walks on homogeneous trees, Doctoral Dissertation, Washington University, St. Louis. | Zbl
,[T1] Maximal abelian subalgebras of function algebras associated with free products, J. Funct. Anal., 79 (1988), 342-350. | MR | Zbl
,[T2] A Green's function for non-homogeneous random walks on free products, Math. Z., 199 (1989), 425-441. | MR | Zbl
,[W1] Nearest neighbour random walks on free products of discrete groups, Boll. U.M.I., 65 B (1986), 961-982. | MR | Zbl
,[W2] Context-free language and random walks on groups, Discrete Math., 64 (1987), 81-87. | MR | Zbl
,Cité par Sources :