Globality in semisimple Lie groups
Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 493-536.

Dans la première section de cet article nous caractérisons les cônes convexes fermés de W de l’algèbre de Lie sl(2,R) n , qui sont invariants sous l’action d’un groupe compact maximal du groupe adjoint et qui sont contrôlables dans le groupe Sl(2,R) n , c’est-à-dire tels que l’image exponentielle de W engendre le groupe tout entier (Theorem 1.3). Dans la section 2 nous développons des instruments algébriques concernant le système de racines réelles relatives à une sous-algèbre de Cartan compacte plongée et les cônes invariants dans les algèbres de Lie semi-simples. Dans la section 3 nous utilisons ces instruments, en combinaison avec des résultats de la section 1, pour caractériser les cônes invariants dans une algèbres de Lie semi-simples qui sont contrôlables dans le groupe simplement connexe associé. Si L est simple nous obtenons une caractérisation des cônes invariants WL qui sont globaux, c’est-à-dire pour lesquels il existe un semi-groupe fermé SG avec L(S)=W.

In the first section of this paper we give a characterization of those closed convex cones (wedges) W in the Lie algebra sl(2,R) n which are invariant under the maximal compact subgroup of the adjoint group and which are controllable in the associated simply connected Lie group Sl(2,R) n , i.e., for which the subsemigroup S=(expW) generated by the exponential image of W agrees with the whole group G (Theorem 13). In Section 2 we develop some algebraic tools concerning real root decompositions with respect to compactly embedded Cartan algebras and invariant cones in semisimple Lie algebras. In Section 3 these tools, combined with the results from Section 1, yield a characterization of those invariant cones in a semisimple Lie algebra L which are controllable in the associated simply connected Lie group G. If L is simple, we even get a characterization of those invariant wedges WL which are global in G, i.e., for which there exists a closed subsemigroup SG having W as its tangent wedge L(S).

@article{AIF_1990__40_3_493_0,
     author = {Neeb, Karl-Hermann},
     title = {Globality in semisimple {Lie} groups},
     journal = {Annales de l'Institut Fourier},
     pages = {493--536},
     publisher = {Institut Fourier},
     address = {Grenoble},
     volume = {40},
     number = {3},
     year = {1990},
     doi = {10.5802/aif.1222},
     mrnumber = {92h:17005},
     zbl = {0703.17003},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1222/}
}
TY  - JOUR
AU  - Neeb, Karl-Hermann
TI  - Globality in semisimple Lie groups
JO  - Annales de l'Institut Fourier
PY  - 1990
SP  - 493
EP  - 536
VL  - 40
IS  - 3
PB  - Institut Fourier
PP  - Grenoble
UR  - http://www.numdam.org/articles/10.5802/aif.1222/
DO  - 10.5802/aif.1222
LA  - en
ID  - AIF_1990__40_3_493_0
ER  - 
%0 Journal Article
%A Neeb, Karl-Hermann
%T Globality in semisimple Lie groups
%J Annales de l'Institut Fourier
%D 1990
%P 493-536
%V 40
%N 3
%I Institut Fourier
%C Grenoble
%U http://www.numdam.org/articles/10.5802/aif.1222/
%R 10.5802/aif.1222
%G en
%F AIF_1990__40_3_493_0
Neeb, Karl-Hermann. Globality in semisimple Lie groups. Annales de l'Institut Fourier, Tome 40 (1990) no. 3, pp. 493-536. doi : 10.5802/aif.1222. http://www.numdam.org/articles/10.5802/aif.1222/

[BD] T. Bröcker and T. Tom Dieck, Representations of Compact Lie Groups, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1985. | Zbl

[Fa1] J. Faraut, Algèbres de Volterra et Transformation de Laplace Sphérique sur certains espaces symétriques ordonnés, Symposia Math., 29 (1989), 183-196. | MR | Zbl

[Fa2] J. Faraut, Algèbres de Jordan et Cônes symétriques, Notes d'un cours de l'Ecole d'Eté CIMPA-Universités de Poitiers, 22 Août-16 Septembre 1988.

[Fo] G.B. Folland, Harmonic Analysis in Phase Space, Princeton University Press, Princeton, New Jersey, 1989. | MR | Zbl

[HawE] S.W. Hawking and G.F.R. Ellis, The Large Scale Structure of Space-Time, Cambridge University Press, Cambridge, 1973. | MR | Zbl

[HarC1] Harish-Chandra, Representations of semi-simple Lie groups, IV, Amer. J. Math., 77 (1955), 743-777. | MR | Zbl

[HarC2] Harish-Chandra, Representations of semi-simple Lie groups, VI, Amer. J. Math., 78 (1956), 564-628. | Zbl

[He] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Acad. Press. London, 1978. | Zbl

[HiHoL] J. Hilgert, K.H. Hofmann, J.D. Lawson, Lie groups, Convex cones, and Semigroups, Oxford University Press, 1989. | MR | Zbl

[HiLPy] K.H. Hofmann, J.D. Lawson, J.S. Pym, Eds., The Analytic and Topological Theory of Semigroups - Trends and Developments, to appear.

[Ho] K.H. Hofmann, Lie algebras with subalgebras with codimension one, Illinois J. Math., 9 (1965), 636-643. | MR | Zbl

[Hu] J.E. Humphreys, Introduction to Lie Algebras and Representation Theory, Springer-Verlag, Berlin Heidelberg New York Tokyo, 1972. | MR | Zbl

[L] J.D. Lawson, Maximal subsemigroups of Lie groups that are total, Proceedings of the Edinburgh Math. Soc., 87 (1987), 497-501. | MR | Zbl

[M] C.C. Moore, Compactifications of symmetric spaces, II, The Cartan domains, Amer. J. Math., 86 (1964), 358-378. | MR | Zbl

[N1] K.-H. Neeb, The duality between subsemigroups of Lie groups and monotone functions, Transactions of the Amer. Math Soc., to appear. | Zbl

[N2] K.-H. Neeb, Semigroups in the Universal Covering Group of SL(2), Semigroup Forum, to appear. | Zbl

[O1] G.I. Ol'Shanskiĭ, Invariant cones in Lie algebras, Lie semigroups, and the holomorphic discrete series, Funct. Anal. and Appl., 15 (1982), 275-285. | Zbl

[O2] G.I. Ol'Shanskiĭ, Invariant orderings in simple Lie groups. The solution to E.B. Vinberg's problem, Funct. Anal. and Appl., 16 (1982), 311-313. | MR | Zbl

[Pa] S. Paneitz, Determination of invariant convex cones in simple Lie algebras, Arkiv för Mat., 21 (1984), 217-228. | MR | Zbl

[S] K. Spindler, Invariante Kegel in Liealgebren, Mitt. aus dem mathematischen Sem. Gieβen, Heft 188, 1988. | MR | Zbl

[V] E.B. Vinberg, Invariant cones and orderings in Lie groups, Funct. Anal. and Appl., 14 (1980), 1-13. | MR | Zbl

Cité par Sources :