On considère les morphismes harmoniques comme généralisation naturelle des fonctions analaytiques qu’on rencontre dans la théorie des surfaces de Riemann. On montre que chaque variété fermée et analytique à 3 dimensions qui supporte un morphisme harmonique à valeurs dans une surface de Riemann est un espace fibré de Seifert. On étudie les morphismes harmoniques définies sur une variété fermée à 4 dimensions et à valeurs dans une variété à 3 dimensions. Ceux-ci déterminent une action du cercle sur qui est localement différentiable, peut-être avec des points fixes. Par conséquent la topologie de est limitée. Dans chaque cas, un morphisme harmonique défini sur une variété fermée à dimensions et à valeurs dans une variété à dimensions (, avec , analytiques dans le cas où ) détermine une action du cercle sur qui est localement différentiable.
Harmonic morphisms are considered as a natural generalization of the analytic functions of Riemann surface theory. It is shown that any closed analytic 3-manifold supporting a non-constant harmonic morphism into a Riemann surface must be a Seifert fibre space. Harmonic morphisms from a closed 4-manifold to a 3-manifold are studied. These determine a locally smooth circle action on with possible fixed points. This restricts the topology of . In all cases, a harmonic morphism from a closed -dimensional manifold to an -dimensional manifold (n, with , analytic in the case determines a locally smooth circle action on .
@article{AIF_1990__40_1_177_0, author = {Baird, Paul}, title = {Harmonic morphisms and circle actions on 3- and 4-manifolds}, journal = {Annales de l'Institut Fourier}, pages = {177--212}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {40}, number = {1}, year = {1990}, doi = {10.5802/aif.1210}, mrnumber = {91e:57025}, zbl = {0676.58023}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1210/} }
TY - JOUR AU - Baird, Paul TI - Harmonic morphisms and circle actions on 3- and 4-manifolds JO - Annales de l'Institut Fourier PY - 1990 SP - 177 EP - 212 VL - 40 IS - 1 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1210/ DO - 10.5802/aif.1210 LA - en ID - AIF_1990__40_1_177_0 ER -
Baird, Paul. Harmonic morphisms and circle actions on 3- and 4-manifolds. Annales de l'Institut Fourier, Tome 40 (1990) no. 1, pp. 177-212. doi : 10.5802/aif.1210. http://www.numdam.org/articles/10.5802/aif.1210/
[1] Harmonic maps with symmetry, harmonic morphisms and deformations of metrics, Research Notes in Math., 87, Pitman, (1983). | MR | Zbl
,[2] Harmonic morphisms onto Riemann surfaces and generalized analytic functions, Ann. Inst. Fourier, Grenoble, 37-1 (1987), 135-173. | Numdam | MR | Zbl
,[3] A conservation law for harmonic maps, Geometry Symp. Utrecht (1980), Springer Notes, 894 (1981), 1-25. | MR | Zbl
and ,[4] Bernstein theorems for harmonic morphisms from R3 and S3, Math. Ann. 280 (1988), 579-603. | MR | Zbl
and ,[5] Harmonic morphisms and conformal foliations of 3-dimensional space forms, preprint. | Zbl
and ,[6] Brownian motion and generalized analytic and inner functions, Ann. Inst. Fourier, Grenoble, 29-1 (1979), 207-228. | Numdam | MR | Zbl
, and ,[7] Introduction to Compact Transformation Groups, Academic Press, (1972). | MR | Zbl
,[8] Lectures on Potential Theory, Tata Institute of Fundamental Research, Bombay, (1960). | MR | Zbl
,[9] Compactifications of harmonic spaces, Nagoya Math. J., 25 (1965), 1-57. | MR | Zbl
and ,[10] Regularity of certain harmonic maps, Global Riemannian Geometry, Durham (1982), E. Horwood (1984), 137-147. | Zbl
,[11] A report on harmonic maps, Bull. London Math. Soc., 10 (1978), 1-68. | MR | Zbl
and ,[12] Selected topics in harmonic maps, C.B.M.S. Regional Conference Series 50, A.M.S. (1983). | MR | Zbl
and ,[13] Harmonic maps between spheres and ellipsoids, preprint, I.H.E.S., (1988).
and ,[14] Harmonic mappings of Riemannian manifolds, Amer. J. Math., 86 (1964), 109-160. | MR | Zbl
and ,[15] Periodic flows on 3-manifolds, Annals of Math., 95 (1972), 68-82. | MR | Zbl
,[16] Foliations with all leaves compact, Ann. Inst. Fourier, Grenoble 26-1 (1976), 265-282. | Numdam | MR | Zbl
,[17] Pointwise periodic homeomorphisms, Proc. London Math. Soc., (3) 42 (1981), 415-460. | MR | Zbl
,[18] Classification of circle actions on 4-manifolds, Trans. Amer. Math. Soc., 242 (1978), 377-390. | MR | Zbl
,[19] Harmonic morphisms between Riemannian manifolds, Ann. Inst. Fourier, Grenoble, 28-2 (1978), 107-144. | Numdam | MR | Zbl
,[20] Lectures on algebraic topology, Benjamin, 1966.
,[21] Embeddings of open Riemannian manifolds by harmonic functions, Ann. Inst. Fourier, Grenoble, 12 (1962), 415-571. | Numdam
and ,[22] The geometry of the generalized Gauss map, Memoirs Amer. Math. Soc., vol 28, n° 236 (1980). | MR | Zbl
and ,[23] A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. Kyoto Univ., 19 (1979), 215-229. | MR | Zbl
,[24] Uber Eine Particuläre Lösing der Partiellen Differential Gleichung ∂2v/∂x2 + ∂2v/∂y2 + ∂2v/∂z2 = 0, Crelle Journal für die reine und angewandte Mathematik, 36 (1847), 113-134.
,[25] Microbundles I, Topology, Vol. 3 Suppl. 1, (1964), 53-80. | MR | Zbl
,[26] Singular Points of Complex Hypersurfaces, Annals of Math. Studies, 61, P.U.P., 1968. | MR | Zbl
,[27] On the 3-dimensional Brieskorn manifolds M(p, q, r), Knots, Groups and 3-manifolds, ed. L.P. Neuwith, Annals of Math. Studies, 84, P.U.P. (1975), 175-225. | MR | Zbl
,[28] Non linear circle actions on the 4-sphere and twisting spun knots, Topology, 17 (1978), 291-296. | MR | Zbl
,[29] Harmonic maps from deformed spheres to spheres, preprint. | Zbl
,[30] Knots and Links, Mathematics Lecture Series 7, Publish or Perish, (1976). | MR | Zbl
,[31] The geometries of 3-manifolds, Bull. London Math. Soc., 15 (1983). | MR | Zbl
,[32] Topics in Complex Function Theory I, Wiley, 1969. | Zbl
,[33] Harmonic mappings of spheres, Amer. J. Math., 97 (1975), 364-385. | MR | Zbl
,[34] The Topology of Fibre Bundles, Princeton Univ. Press, Princeton, 1951. | MR | Zbl
,[35] Three dimensional manifolds, Kleinian groups and hyperbolic geometry, Bull. Amer. Math. Soc., 6 (1982), 357-381. | Zbl
,[36] Conformal foliations, Kodai Math. J., 2 (1979), 26-37. | MR | Zbl
,[37] Harmonic morphisms, foliations and Gauss maps, Complex Differential Geometry, ed. Y.T. Siu, Contemporary Mathematics, 49, A.M.S., (1986), 145-183. | MR | Zbl
,[38] Quadratic forms between spheres and the non-existence of sums of squares formulae, Math. Proc. Camb. Phil. Soc., 100 (1986), 493-504. | Zbl
,Cité par Sources :